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Abstract.1  We will demonstrate a method for continuous stress 
monitoring using data provided by a commercial wrist device 
(Microsoft Band) equipped with physiological sensors and an 
accelerometer. The method consists of three machine-learning 
components: a laboratory stress-detector that detects short-term 
stress; an activity recognizer that continuously recognizes user’s 
activity and thus provides context information; and a context-based 
stress detector that first aggregates the predictions of the laboratory 
detector, and then exploits the user’s context to provide decision on 
20 minutes interval. The method was trained on 21 subjects in a 
laboratory setting and tested on 5 subjects in a real-life setting. The 
accuracy on 55 days of real-life data was 92%. The method is 
integrated in a smartphone application, which will be demonstrated 
at the conference. 

1 INTRODUCTION 

Stress is a process triggered by a demanding physical and/or 

psychological event [10]. It is not necessarily a negative process, 

but continuous exposure can result in chronic stress, which has 

negative health consequences such as raised blood pressure, bad 

sleep, increased vulnerability to infections, decreased mental 

performance and slower body recovery processes [9]. It also has 

substantial economic consequences: the European Commission 

estimated the costs of work-related stress at €20 billion a year due 

to absence from work and decreased productivity [1]. Therefore, a 

stress-detection system would be useful for self-management of 

mental (and consequently physical) health of workers [3], students 

and others in the stressful environment of today’s world. 

Thanks to the recent technological advances, some of the stress-

response components can be captured using an unobtrusive wrist 

device equipped with sensors, e.g., Microsoft Band. Our method is 

also based on the data captured by such a device, on which we use 

advanced machine learning (ML) in combination with context 

information.  The method is tested in real life, but instead of a chest 

belt, we use a commercial wrist device. In 2015 Hovsepian et al. 

[6], as future work suggested better handling of physical activity 

(which can confuse stress detection) and including context 

information in the process of stress detection – which is what we 

have done in our study. 
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2 METHODOLOGY 

For developing the method for stress detection, two datasets were 

recorded: a laboratory dataset, which included 21 subjects, and a 

real-life dataset, which included 5 subjects. In both datasets the 

Empatica2 wrist device was used to collect data, which provides 

heart rate (HR), blood volume pulse (BVP), galvanic skin response 

(GSR), skin temperature (ST), time between heartbeats (IBI) and 

accelerometer data. To collect the laboratory data we used a 

standardized stress-inducing experiment as proposed by Dedovic et 

al. [2]. The main stressor was solving a mental arithmetic task 

under time and evaluation pressure. The real-life data was gathered 

on ordinary days, when the subjects were wearing the wrist device 

and were keeping track of their stressful events. 

Figure 1 presents the proposed method for stress detection in 

real-life. The method consists of three main ML components: a 

laboratory stress detector, an activity recognizer, and a context-

based stress detector which provides the final output. 

The laboratory stress detector is a ML classifier that 

distinguishes stressful vs. non-stressful events in 4-minute data 

windows with a 2-minute overlap.  For each data window, features 

for stress detection are computed. From each physiological signal 

(BVP, HR ST and GSR), statistical and regression features are 

computed: mean, standard deviation, quartiles, quartile deviation, 

slope and intercept. Additional features to quantify the GSR 

response are computed with an algorithm for peak detection [7]. 

For the IBI signal, we use features obtained through heart-rate-

variability analysis in the frequency and time domain. These 

features are fed into a classifier trained with the Random Forest 

ML algorithm, which was chosen experimentally  

The activity recognition (AR) classifier is a ML classifier that 

uses the accelerometer data to recognize the user’s activity: sitting, 

walking, running, and cycling. It is based on our previous approach 

for AR [4]. The classifier outputs an activity every 2 seconds. 

When aggregating these activities over the data window of 4 

minutes, each activity is changed into an activity level (e.g., lying = 

1, walking = 3, running = 5) and averaged over the window. The 

average activity level is passed as a feature to the context-based 

stress detector. 
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The context-based stress detector was developed to distinguish 

between genuine stress in real life and the many situations which 

induce a similar physiological arousal (e.g., exercise, eating, hot 

weather, etc.). As features, it uses the distribution of the last 10 

outputs of the laboratory stress detector, the previous output of the 

context-based detector, and context features: whether there was any 

high-level activity in the last 20 minutes, the hour of the day, the 

type of the day – workday/weekend, etc. It classifies every 20 

minutes as stressful or non-stressful. The context-based stress 

detector was trained with the SVM ML algorithm, which was again 

chosen experimentally. 

 

3 EVALUATION AND DEMO 
APPLICATION 

The evaluation of our method was performed on the real-life data. 

Because labeling stress is quite subjective [5] and it is almost 

impossible to strictly define starts and ends of stressful situations, 

we used a technique that splits the stream of real-life data into 

discrete events. Each event had a minimum length of one hour. If 

there was a stressful situation in the event (labeled by the user), the 

event’s duration was extended to capture the stressful situation plus 

one hour before and after the situation. By this, we are allowing for 

a labeling lag of one hour. The 55 days of the real-life data was 

split into nearly 900 events, each lasting at least an hour. Figure 2. 

depicts the output of the context-based stress detector for the real-

life dataset using leave-one-subject out evaluation (LOSO). On the 

x-axis is the hour of the day, on the y-axis is the day, the black 

stripes label to which subject belongs the data, and the colored 

squares correspond to the false positive (FP), false negative (FN), 

true positive (TP) and true negative events (TN). The achieved 

accuracy is 92% with an F1 score of 63% for detecting stress. 

 

Figure 3 presents a screen-shot of the smartphone 

implementation of the context-based method for stress detection. 

The upper graph presents the output of the laboratory stress 

detector and the lower graph present the output of the context-

based stress detector. The orange bar at the bottom presents the 

arousal level. The application is being developed for the Fit4Work 

project [3] which aims to help older workers for mental and 

physiological fitness. 
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Figure 1.  Method for stress detection in real life. 

Figure 2. Context-based output with LOSO evaluation. 

Figure 3. Context-based output with LOSO evaluation. 


