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Thomas D. Nielsen4 and Helge Langseth5 and Antonio Salmerón6 and Anders L. Madsen 7

AMIDST is a flexible Java library for probabilistic machine learn-
ing, which provides tailored parallel and distributed implementa-
tions of Bayesian parameter learning (and probabilistic inference)
for batch and streaming data. This processing is based on flexible and
scalable message passing algorithms [11]. AMIDST handles proba-
bilistic graphical models with latent variables and temporal depen-
dencies [3] which can be trained on large-scale data (making use of
Apache Spark 8 and Apache Flink 9) and provides interfaces to a
number of other platforms like HUGIN, MOA, Weka and R.

In this demonstration we will show some of the main AMIDST
functionalities. During the demo, the construction of customized
models, possibly with latent variables and temporal dependencies,
will be explained. Here is a sketch of the demo:

• First, we will define the structure of a probabilistic graphical
model, by showing how to build a graph encoding the dependen-
cies between the observed and latent variables. Alternatively, var-
ious standard models are available to use in AMIDST (Gaussian
discriminative analysis, Gaussian mixtures, factor analyzer, etc).
Once the structure is determined, the parameters of the model will
be fit from local data using multi-core learning algorithms. Af-
terwards, some probabilistic queries are performed with scalable
algorithms.

• Then, this example is extended to use distributed data over Flink
(with only minor changes in the code), showing the flexibility of
the toolbox. Scalable and distributed learning and inference algo-
rithms provided by AMIDST will be used running on top of Flink.

• Finally, probabilistic graphical models with temporal depen-
dencies are considered. AMIDST provides with several latent-
variable dynamic models (Hidden Markov model (HMM), Fac-
torial HMM, Kalman filter (KF), Switching KF, etc), or alterna-
tively, customized models can be defined. Again, learning and in-
ference algorithms are used with both local and distributed data
over Flink, showing the scalability of the AMIDST algorithms.
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The AMIDST toolbox is supported by a considerable number of
scientific papers, both with methodological developments [1, 2, 4, 5,
7, 8] and with real industrial applications [1, 2, 6, 9, 10].

More information on AMIDST
The AMIDST toolbox has been developed within the AMIDST
project (Analysis of MassIve Data STreams) of the European Union’s
Seventh Framework Programme, under grant agreement no 619209.
See more information on the AMIDST toolbox on these sites:

• The AMIDST toolbox website:
https://amidst.github.io/toolbox/

• AMIDSTs Github site (demo examples in the repository ‘tuto-
rial’):
https://github.com/amidst

• AMIDST Toolbox YouTube channel, with some introductory
videos:
https://www.youtube.com/channel/
UCBdU7xvRCVZj-c9z78n2meQ
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