
Demo: Natural Language Processing for
Online Fraud Scenario Extraction

Bas Testerink, Floris Bex1

Abstract. In this demo we present our progress in the project Intel-
ligence Amplification for Cybercrime (IAC), in which we apply AI
techniques to allow natural dialogues for online criminal complaints
concerning fraud cases. We show the natural language processing
and dialogue modules of the system. The dialogue module allows
for mixed-initiative dialogues between human complainants and soft-
ware agents for crime intake. An interface is provided that allows the
complainant to input free text and form elements, which are then in-
tegrated into a structured knowledge graph by the NLP module. This
knowledge graph then serves as input for the intake agent, who can
use it to reason about the incident that has occurred and formulate
follow up questions to the user. A paper with full details regarding
the background of this demo application has been accepted in the
AI4J workshop at ECAI 2016 [2].

1 Introduction

Reasoning in police investigations is a complex process, which con-
sists of collecting, organizing and assessing a mass of unstructured
and unreliable evidence and scenarios in a case. Artificial Intelli-
gence has proposed various scientifically founded ways of treating
evidence using, for example, Bayesian networks or non-monotonic
logics (cf. [6]). One of the elements that is missing from AI models
of evidential reasoning is a rendering of the process of constructing
and analysing scenarios, which can be seen as a dialogue between
multiple agents (e.g. police analysts, witnesses, forensic experts).
Another problem for logical or probabilistic models of evidence is
that the focus in real cases is often on more linguistically oriented
concepts such as arguments and stories, often rendered unstructured
and informal, as natural language. What is hence needed are tech-
nologies and theories for the process of investigation that bridge the
gap between dialogical natural language interfaces and more formal
models of evidential reasoning.

The project Intelligence Amplification for Cybercrime (IAC) aims
to develop technologies to bridge the gap between natural arguments
and stories in dialogue and structured scenarios for evidential reason-
ing. This development has as a practical goal to improve the online
intake of criminal complaints and the subsequent investigations on
the topics of e-crime and cybercrime for the Dutch National Police.

Our demo shows the initial developments of our mixed-initiative,
agent-based intake system. In particular, we demo a dialogue inter-
face and a natural language processing module that translates struc-
tured and unstructured free-text input from the dialogue interface to
a knowledge graph, a labelled graph containing the entities, events
and relations in a case. We then show how the system can reason

1 Utrecht University, the Netherlands, email: {B.J.G.Testerink,
F.J.Bex}@uu.nl

Figure 1. Architecture of the intake system. Boxes indicate software
modules. Arrows indicate interaction between components such as service

calls or input provision.

with these knowledge graphs to formulate further questions that can
be inserted into the dialogue.

The demo is intended for those who are interested in dialogues,
natural language processing and agent programming. The latter tar-
get group might be interested because the underlying implementation
is created with the agent paradigm and implemented with the agent
programming framework from Dastani and Testerink [4].

2 Application Description
An overview of the system is shown in Figure 1. The complainant
and police interact with the system through a dialogue interface (Fig.
2). This interface allows users to submit input, i.e. make dialogue
moves, but also shows the status of the dialogue such as the open
questions.

Questions can be generated by both the complainant and the po-
lice, but will also originate from the system itself through the scen-
ario reasoning module. The dialogue is managed by a dialogue man-
ager that maintains the legal moves of the participants. The legality
of a move for a participant is based on the participants’ commitments
in the dialogue (e.g. statements that were made). The maintenance of
the commitments in a commitment store is also part of the dialogue
manager and its details are explained in [1]. The natural language
processing system is called upon in case a participant provides free-
text input. This system also maintains a knowledge graph on a black-
board that is constructed throughout the dialogue and by different
agents (or a single agent that contains all the modules). The graph
serves as input for the scenario reasoning module of the application
which then, based on the status of what is known about the reporter’s
incident, asks extra questions and clarifications through the dialogue
manager. Finally, the scenario reasoning module also provides the
analysis of reports and cases to the police.



Figure 2. Screenshot of the dialogue interface

Our demo shows a web application in which a user can file a report
and see how the knowledge graph is constructed. An example know-
ledge graph that is generated by the application is shown in Figure 3.
In this example there is a submitted form that contained data such
as addresses and names. This data is adopted as light blue entities
and edges in the graph. The entities and edges are subject to an on-
tology - for clarity, things like class membership are not shown here.
The form contains entities such as the complainant and the counter
party. Also part of the form is the story that describes the incident. In
this case we use a Dutch two sentence story: “Ik heb Floris betaald.
Maar hij stuurde het product niet op.” (translated: “I had paid Floris.
But he did not send the product.”).

This story is processed by the Alpino dependency parser [3] and its
output is added to the knowledge graph as green nodes (for words and
part-of-speech tags) and edges (dependency relations and head rela-
tions). Then, we apply a named entity recognition module which tries
to find mentions of known entities from the form in the text (such as
the counter party and the complainant), or identify new entities. Its

Figure 3. Part of a knowledge graph as outputted by the application.

output are red nodes and edges. In this example the module recog-
nized the complainant in the text as being mentioned by ‘Ik’ (trans-
lated: ‘I’) and the counter party as being mentioned by ‘hij’ (trans-
lated: ‘he’) and his first name ‘Floris’. Also a new entity ‘product’
was found in the text. The named entity recognition module uses the
earlier adopted dependency tree information to find mentions. One
can hand craft classifiers using SPARQL queries (which is part of the
demo) or, as we intend to do at a later stage, apply machine learning
techniques such as subgraph feature extraction [5] to train classifiers.
A classifier may find certain paths to indicate certain relations. For
instance, if a word ‘I’ is part of a story, which belongs to a report R,
then there is an increased probability that ‘I’ is a mention of the com-
plainant of report R, as complainants usually write in the first person.
Aside from named entity recognition we can also apply other classi-
fiers that try to find different relations among the identified entities.
In the example these are adopted as blue edges and the classifiers
here found that the complainant paid the counter party, and that the
product entity form the text was not delivered to the complainant.

Once a knowledge graph has been built, we can perform reasoning
over the graph and give feedback to the user via the dialogue inter-
face. Given a number of templates or schemes for standard fraud
scenarios (which will be implemented in the demo), we can test
whether all the elements of the scenario have been correctly men-
tioned in the complainant’s story. If, for example, the user does not
mention a product in his story, then the system can ask the user to
further specify this through the dialogue interface.

The different information sources are all implemented as agent
modules that can be instantiated as individual agents or be combined
in a large single agent. Alongside the knowledge graph we will show
the structure of the source of the agents and discuss the benefits of the
agent programming paradigm when one constructs a dialogue system
such as ours. These include among others the ease of introducing new
information sources to the graph and parallel computing.

References
[1] Floris Bex, John Lawrence, and Chris Reed, ‘Generalising argument dia-

logue with the dialogue game execution platform’, 141–152, (2014).
[2] Floris Bex, Joeri Peters, and Bas Testerink, ‘A.i for online criminal com-

plaints: from natural dialogues to structured scenarios’, in Proceedings
of the workshop AI for Justice (AI4J) at ECAI 2016 (t.b.p), (2016).

[3] Gosse Bouma, Gertjan Van Noord, and Robert Malouf, ‘Alpino: Wide-
coverage computational analysis of dutch’, Language and Computers,
37(1), 45–59, (2001).

[4] Mehdi Dastani and Bas Testerink, ‘From multi-agent programming to
object oriented design patterns’, in Engineering Multi-Agent Systems,
204–226, Springer International Publishing, (2014).

[5] Matt Gardner and Tom Mitchell, ‘Efficient and expressive knowledge
base completion using subgraph feature extraction’, Proceedings of
EMNLP. Association for Computational Linguistics, 3, (2015).

[6] B. Verheij, F.J. Bex, S.T. Timmer, C.S. Vlek, J.-J. Meyer, S. Renooij,
and H. Prakken, ‘Arguments, scenarios and probabilities: connections
between three normative frameworks for evidential reasoning’, Law,
Probability & Risk, 15, 35–70, (2016).

2


