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Preface 

The combination of different intelligent methods is a very active research area in 
Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that 
benefit from each of their components. It is generally believed that complex problems 
can be easier solved with such integrated or hybrid methods. 

Some of the existing efforts combine what are called soft computing methods (fuzzy 
logic, neural networks, genetic algorithms, swarm intelligence methods) either among 
themselves or with more traditional AI methods such as logic and rules. Another 
stream of efforts integrates case-based reasoning with soft-computing and more 
traditional AI or machine learning methods. Yet another integrates logic-based agent 
approaches with non-symbolic approaches. Some of the combinations have been 
quite important and more extensively used, like neuro-symbolic methods, neuro-
fuzzy methods and methods combining rule-based and case-based reasoning. 
However, there are other combinations that are still under investigation, such as 
those related to natural language processing and the Semantic Web. In some cases, 
combinations are driven by theoretical aspects, but usually they are created in the 
context of specific applications. 

The Workshop is intended to become a forum for exchanging experience and ideas 
among researchers and practitioners who are dealing with combining intelligent 
methods either based on first principles or in the context of specific applications. This 
year it is held in conjunction with ECAI 2016. There were totally eleven papers 
submitted to the Workshop. Some of them were extended versions of papers 
accepted as short papers at ECAI 2016. Each paper was reviewed by at least two 
members of the PC. We finally accepted all of them, given they were of required 
quality. Revised versions of the accepted papers (based on the comments of the 
reviewers) are included in these proceedings in alphabetic order (based on first 
author). The papers involve various intelligent methods and application domains.  

We hope that this collection of papers will be useful to both researchers and 
developers. Given the success of the first six Workshops on combinations of 
intelligent methods and applications, we intend to continue our effort in the coming 
years. 

Ioannis Hatzilygeroudis 

Vasile Palade 



 



Investigation of Cellular Automata Neighbourhoods in
Image Segmentation

Anca Andreica and Laura Dioşan and Andreea Şandor1

Abstract.
Cellular Automata (CA) can be successfully applied to the task

of image segmentation. The CA-based GrowCut algorithm is able to
perform such a task and we aim to investigate the full emergence
phenomenon that arises during the segmentation process. In fact, we
want to investigate how the segmentation performance could depend
on the choice of the neighbourhood topology that is used by a CA-
based algorithm. Several types of neighbourhoods are investigated.
The experiments are performed by considering both synthetic and
real-world images. The segmentation performance is analysed by us-
ing different criteria (evaluation measures). The numerical results in-
dicate the way the neighbourhood topology influences the segmenta-
tion process.

1 Introduction

A large number of computer vision applications require image seg-
mentation, which is a critical step towards content analysis and un-
derstanding the visual information. Frequently, the image segmen-
tation is aimed to partition an image into separate regions, which
ideally correspond to different real-world objects.

The partitioning task is even more difficult as the images are larger,
with more dimensions (3D images or 4D images) or with an in-
creased number of different objects that must be identified along
them (a multi-label segmentation must be performed in these cases).

The image segmentation approach investigated in this paper is a
region based method named GrowCut [37] and provides multi-label
segmentation for N-dimensional images. It is based on a cellular au-
tomata and it has a few advantages that makes it a good candidate. In
terms of implementation it is not very complex and the most impor-
tant part is that it allows a very performant parallel implementation.
Other advantages include the possibility to have multiple labelled ob-
jects at once, labels which can (but not must) be defined by the user.
The process is iterative, observable and can be dynamically modified.
This gives the user the possibility to guide the segmentation process
for the difficult images, however in most cases such a guidance is not
necessary.

The contribution of this paper is two-fold.

• First, we propose to investigate different neighbourhood topolo-
gies involved in the CA mechanism. The majority of related ap-
proaches found in the literature mainly deal with the von Neumann
or Moore neighbourhood, without investigating how the shape and
the size of the neighbourhood could affect the performance of seg-
mentation.

1 Babes-Bolyai University, Cluj-Napoca, email: anca@cs.ubbcluj.ro,
lauras@cs.ubbcluj.ro, andreea.sandor@math.ubbcluj.ro

• Secondly, we propose to compare the performance of the segmen-
tation process by taking into account several supervised evaluation
measures. This research direction was followed due to the variety
of errors that can occur in the segmentation process: new added
regions of interest or new added background regions, holes inside
some regions or holes placed on the object’s edges. Therefore, the
evaluation of image segmentation has to take into account, simul-
taneously, how many segmented objects are produced, what is the
area of these segments and what is the content of them (existence
of inside holes and boundary holes in the segmented region). In
addition, the evaluation has to consider the degree of correspon-
dence between the segmentation results and the ground truth seg-
mentation, actually the precision of segmentation as a measure
of repeatability. Finally, but no less important, the temporal effi-
ciency of segmentation process must be considered, also.

The paper is organized as follows: Section 2 presents related work
in the area of Cellular Automata, Image Segmentation and Cellu-
lar Automata for Image Segmentation. The next section contains the
reasons why we believe that different neighbourhoods could have an
important impact on the performance of the algorithm, by presenting
such approaches for other problems that can be solved by the means
of Cellular Automata. Numerical experiments on both real-world and
synthetic data are presented in Section 4, followed by conclusions
and ideas for further work in Section 5.

2 Related work

2.1 Cellular Automata

The one-dimensional binary-state CA capable of performing com-
putational tasks has been extensively studied in the literature [7, 16,
23, 25, 35]. Usually, a one-dimensional lattice of N two-state cells is
used for representing the CA. The state of each cell changes accord-
ing to a function depending on the current states in the neighbour-
hood. The neighbourhood of a cell is given by the cell itself and its
r neighbours on both sides of the cell, where r represents the radius
of the CA. The initial configuration of cell states (0s and 1s) for the
lattice evolves in discrete time steps updating cells simultaneously
according to the CA rule.

CAs have been considered for a series of applications like com-
puter processors, cryptography, physical reality modelling, image
processing and many others. In image processing for example, two-
dimensional CAs are usually involved. The pixels of the image rep-
resent cells of the CA and they update their state based on the states
of the neighbouring cells (pixels). Multiple states of CA cells allow
the processing of gray-level images or colour images. Identifying the
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rules that apply to cells in order to answer a certain request in image
processing is nevertheless a nontrivial task.

Three-dimensional CAs have mainly been used within the frame-
work of chemical systems for tasks like percolation description, dis-
sociation of organic acid in solutions, bond interactions, simulation
of diffusion controlled reaction kinetics, dissolution and many oth-
ers [18].

2.2 Image Segmentation
Image segmentation refers to the task of partitioning an image in
sets of regions and therefore identifying objects of interest in it.
Each pixel of the image is labelled in such a way that pixels with
the same label share some features (like belonging to the same or-
gan/bone/blood vessel in a medical image).

The segmentation of an image, I , can be defined as the partitioning
of I in L sub-regions, R1, R2, . . ., RL, such that:

•
⋃nL

l=1
Rl = I

• ∀x̃ ∈ Rl, S(x̃) = l,∀l ∈ {1, 2, . . . , L}
• Rl is a connected set, ∀l ∈ {1, 2, . . . , L}
• Rl1 ∩Rl2 = φ,∀l1, l2, l1 6= l2
• Q(Rl) = True, l ∈ {1, 2, . . . , L}
• Q(Rl1 ∪ Rl2) = False for each pair of adjacent regions Rl1 ,
Rl2 .

whereQ is a logical predicate defined on the points of the considered
region (Q is used for characterizing the objects of the image).

Image segmentation techniques are still far from being able to
identify relevant features (such as tumours or even simple regions). It
is in this process that we propose to make use of CAs where, through
appropriate choice of evolution rules and topologies, we can identify
pixels which belong together. There are only few attempts in the lit-
erature at using CAs for image segmentation, but they confirm the
scientific potential of the proposition.

2.3 Cellular Automata for Image Segmentation
Cellular Automata have been used for various image processing tasks
among which: geometric transformations, noise filtering, feature de-
tection, edge detection. Image segmentation was also approached by
the means of Cellular Automata, but there are only few attempts in
the literature.

Tasks as edge detection, noise filtering, thinning and finding the
convex hulls of all regions have been solved by CAs in [29, 31, 32].
In [24, 31, 32] a thresholded local update rule is proposed for edge
detection in gray-level images.

In [29] a threshold decomposition method is used in order to per-
form some image processing tasks in gray-level images. The goal of
this research is to identify the optimal rules for solving these tasks.
Their approach works in two stages: training (that is performed on
a binary image) and testing the optimal rules for a gray-level image.
Another gray-level image processing model was investigated in [30]
based on a 3-state CA.

Multistate CAs (that, according to our knowledge, have not been
used for image segmentation until now) can be: Sierpinski cellular
automaton [26], a sandpile cellular automaton (or the Abelian sand-
pile model) [4], a Greenberg-Hastings automaton [13].

Sierpinski CA can be equivalent to a classical one-dimensional
binary CA with Rule 90: during the CA evolution, all the values are
simultaneously replaced by the exclusive or of the two neighbouring
values.

The sandpile model is defined on a grid. The height of a sand pile
is retained in a cell. During the CA evolution the height at one of the
points increases. If a height exceeds the limiting value, the sand must
be moved to nearby points until the height at all points are once again
below the limiting value.

The Greenberg-Hastings automaton works on a regular grid of
cells in one or more dimensions. This CA was described as a simple
model generating spatio-temporal structures similar to those that can
be observed in the Belousov-Zaikin-Zhabotinsky oscillating chemi-
cal reaction [13]. The first two items describe a reaction rule, while
the last one describes a diffusion rule. This model is simple due to the
fact that the diffusion rule and the reaction rule do not act together
for a same cell at the same time. In two dimensions, the Greenberg-
Hastings automaton can exhibit complex spiralling behaviours.

2.4 GrowCut Algorithm
One of the most popular approaches found in the literature for im-
age segmentation using Cellular Automata is given by the GrowCut
algorithm [37]. In our opinion, Cellular Automata are used in this
approach only as a parallelization tool, without taking advantage of
the full emergence phenomenon that arises in a Cellular Automaton.

The GrowCut algorithm is using as input several labelled seeds
chosen by the user from the pixels of the image. The algorithm au-
tomatically labels all the other pixels belonging to the image starting
from the given seeds. A Cellular Automaton is used for propagating
the labels of the seeds throughout the whole image. A cell of the CA
corresponds to a pixel of the image. A cell state is given by a label,
a strength and a feature vector (in the simplest case, this corresponds
to the gray level of the pixel). The labels and the strength of the cells
are being updated based on the state of the neighbouring cells. The
authors give an intuitive explanation of the method using a biological
metaphor, the labelling process being thus interpreted as the growth
and struggle for domination of a number of types of bacteria. This
process stops when it reaches a stable configuration. The algorithm
performance highly depends on the choice of the seeds.

In [17] the authors show that the seeded GrowCut proposed by
Vezhnevets [37] is essentially no different from the Ford-Bellman
algorithm that computes shortest paths from a cell to all the other
cells in the CA. The fact that Cellular Automata is no more than
a parallelization tool becomes more clear after understanding their
proof.

An unsupervised version of GrowCut is proposed in [11]. The
main difference between this approach and the original GrowCut is
that the seeds are randomly generated and their label is adjusted over
time, while in GrowCut the seeds are given by the user and they are
expected to be correctly labelled from the beginning.

Another version of GrowCut, that improves its ability to correctly
detect the edges, is proposed in [5]. The method uses an edge detec-
tion filter in order to detect that image voxels that find themselves
on edges of the segments. Other variants of GrowCut are proposed
in [14, 19]. In [27] the authors propose an enhancement of GrowCut
with automatic seed selection. In [6] the image noise is reduced (and
therefore the GrowCut algorithm improved) by adding an anisotropic
diffusion filter.

3 Cellular Automata Topology and Neighbourhood
The CA topology and neighbourhood structure used for a cell in ap-
plying the rule are crucial elements in the process of rule discov-
ery and impact directly the rule performance. In the case of a one-
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dimensional lattice of N cells, the neighbourhood of a cell is usually
given by the cell itself and its r neighbours on both sides of the cell,
where r represents the radius of the CA. The regular lattice topol-
ogy and the described induced neighbourhood are engaged in most
studies tackling 1D Cellular Automata.

In the case of 2D Cellular Automata, the topology is usually a
two-dimensional grid that allows the definition of different neigh-
bourhood schemes. The most popular neighbourhoods used in this
case are the von Neumann and the Moore neighbourhoods. The von
Neumann neighbourhood is given by the set of all cells that are
orthogonally-adjacent to the core cell (the core cell itself may or may
not be considered part of the neighbourhood, depending on context).
The Moore neighbourhood is the set of all cells that surround the
core cell.

In the case of 1D Cellular Automata, different neighbourhood
schemes have been investigated in order to study their influence on
the rule performance. In [8, 9, 36, 38, 39], network topologies are
evolved for cellular automata. In these studies it is shown that, com-
pared to regular lattices, the evolved topologies have better perfor-
mance for the CA majority and synchronization tasks.

A node-weighted network model proposed in [12] and extended
in [3] allows the use of weights for each node in the network topol-
ogy. As already mentioned, the state of each cell in CA changes ac-
cording to a function depending on the current states in the neigh-
bourhood. The neighbourhood of a cell is given by the cell itself and
its neighbours. In current existing approaches, each neighbour (in-
cluding the cell itself) has the same vote weight when deciding which
is the next state of the current cell. The network topology allowed the
introduction of neighbours with different vote weights when deciding
the next state of the current cell. Thus, a node-weighted network is
obtained where each node has a certain associated weight reflecting
the varying importance represented by nodes.

A new hybrid topology and a mixed induced neighbourhood that
keeps invariable the number of neighbours was also proposed in [1].
The neighbourhood of a node is given by the radius r. Each node
has r neighbours on the left hand side and r neighbours on the right
hand side, which gives a neighbourhood of 2 ∗ r + 1, because we
also consider the node itself. In order to create the new topology
of radius r, the authors started with a regular ring lattice of radius
r − n. The other 2 ∗ n nodes that node i is connected to, are long
distance neighbours. They are randomly chosen from the rest of the
nodes, but following some rules that ensure the equilibrium of the
neighbourhood. This means that i always remains the central node
of the neighbourhood and the distance between node i and the long
distance neighbours places half of them (n nodes) on the left hand
side and the other half (n nodes) on the right hand side of i.

The hybrid topology described before allowed the enhancement
of the neighbourhood scheme with neighbours having different vote
weights when deciding the next state of the current cell [2]. The hy-
brid topology involves the presence of two kinds of neighbours: local
and far neighbours. The proposed rule gives different vote weights to
local neighbours and to far neighbours.

The computational experiments performed for the density task em-
phasize that the proposed topologies and neighbourhoods induce an
improved performance of the considered rules, compared to the stan-
dard ones. Moreover, the CA performance remains stable when dy-
namic changes are introduced in the neighbourhood structure.

These results have shown how novel topologies and neighbour-
hoods can trigger good performance in CA tasks and they can be
adapted so as to improve segmentation techniques. Our research in
this direction begins with the study presented in this paper, where

several different neighbourhood schemes are investigated for the im-
age segmentation task within the framework of the popular Grow-
Cut algorithm, while most implementations of the GrowCut algo-
rithm are using the Moore neighbourhood. The four neighbourhood
schemes that are being studied in this paper are formalized below and
depicted in Figure 1.

The von Neumann neighbourhood of a cell (x0, y0) is given by:
NV (x0, y0) = {(x, y) : |x− x0|+ |y − y0| ≤ r}.
The Moore neighbourhood of a cell (x0, y0) is given by:
NM (x0, y0) = {(x, y) : |x− x0| ≤ r, |y − y0| ≤ r}.

In both cases, r represents the range of the neighbourhood and r = 1
for the standard case. In our analysis we investigate von Neumann
and Moore neighbourhoods of range 1 and 2.

4 Numerical experiments
4.1 Details about data
We have carried out experiments using some synthetic data and some
real images. A first experiment was dedicated to analyze the perfor-
mance of segmentation obtained by GrowCut with different neigh-
bourhood schemes for two-dimensional synthetic images. Several
regular geometric shapes (square, rectangle, circle) were automati-
cally generated as foreground in images, with uniform intensity and
with noise. The original synthetic images (with a circle, a rectangle
and a square, respectively) are presented in Figure 2.

Regarding the real-world image, Berkeley Segmentation Dataset
[21] and The Interactive Segmentation (IcgBench) Dataset [33]
contain natural images with corresponding human segmentations
(ground-truth) and we use some of them in order to validate our ap-
proach. One example of such two-dimensional images (and the cor-
responding ground-truth) is presented in Figure 3.

4.2 Details about performance measures
It is very important to establish the way we define similar regions
or segmentations. The obtained segmentations and their boundaries
could be compact, discontinuous, smooth etc.

One of the metrics that we are using in our experiments is the Dice
coefficient, which computes the overlap between regions, quantify-
ing the similarity of two segmentations. This measure is especially
useful when the volume changes are of great importance in the anal-
ysis process. The Dice similarity coefficient [10] (denoted as DICE
in this paper) is computed as the ratio between the number of pixels
belonging to the intersection (of two possible segmentations) and the
average of their sizes.

Another frequently used measure for evaluating the segmentation
performance is the Global Consistency Error (GCE) [21]. An error-
based measure is actually an “opponent” to a similarity measure (two
segmentations are identical if an error-based measure is 0). This mea-
sure is computed as an average over the error of pixels/voxels belong-
ing to two segmentations.

Some metrics that compute the distance between two segmented
regions by taking into account the pixel location could be also con-
sidered. They quantify the dissimilarity of two segmentations and
they are useful when the contours (the shapes of the boundary of
the structure) are of importance for the image analysis. A distance
value of 0 corresponds to a perfect match between the computed
segmentation and the ground truth, while greater values indicate
higher errors. In our approach, we consider the directed Hausdorff
distance between two segmentations (called HDRFDST and defined
as the maximal distance from a point in the first segmentation to a

3



(a) von Neumann neighbourhood (b) Moore neighbourhood

(c) extended von Neumann neighbourhood (d) extended Moore neighbourhood

Figure 1: Different neighbourhood schemes for 2D Cellular Automata

(a) A circle (b) A square (c) A rectangle

Figure 2: 2D synthetic images

nearest point in the other one [15]) and the Mahalanobis Distance
(MAHLNBS) [20] (that regards the correlation among all the pixels
from the set that the considered two pixels are belonging).

A similarity measure able to evaluate both clusterings and clas-
sifications (because it is not based on labels) is the Rand Index
(RNDIND), proposed in [28].

The similarity of two segmentations can be computed by taking
into account their areas or volumes, also. In order to determine such
a measure, a distance between two volumes must be defined (the sim-
ilarity being 1 - this distance). A possible definition [34] for the vol-
umetric distance is the ratio of the absolute volume difference and
the sum of the compared volumes. Such a measure is useful when
the segmentation purpose is to identify the changes in size since it
is sensitive to miss-estimations of the segmented volume more than
anything else. In the case of a single measurement, the volume error
(two times the volume difference over the volume sum) can be used,
while in the case of multiple measurements (when an average result
is of interest) the absolute volume error can be used.

4.3 Numerical results

The aim of the first experiment is to investigate if and how the neigh-
bourhood topology (e.g. Moore versus Neumann or standard versus
extended size) influences the performance of the segmentation pro-
cess. Since GrowCut algorithm requires some initial seeds (randomly
given), 30 randomly generated sets of seeds have been considered
for each image and for each neighbourhood type. For each set of
seeds, the GrowCut algorithm has been run more iterations, until no

cell/pixel changes its state. After the last iteration, the segmented im-
age is compared to the corresponding ground truth and the evaluation
measure is determined.

In Figure 4 we present the obtained results for a particular image.
In Figures 5 and 7 we present the average number of iterations

(over all 30 sets of seeds) required by GrowCut algorithm to con-
verge for several synthetic and real-world images, respectively, and
for all considered neighbourhoods. The results given in Figures 6 and
8 correspond to the Dice similarity obtained in these runs.

In Tables 1 and 2 we present the mean (over all images) and the
corresponding confidence intervals of the results for all considered
evaluation measures computed in this experiment.

Regarding the synthetic images, by taking into account the mean
of iterations from Table 1, we can observe that the GrowCut is able
to perform the best segmentation by using Neumann neighbourhood.
If we take into account the average Dice similarity, the average
GCE, the average MAHLNBS, the average RNDIND and the aver-
age VOLSMTY, both extended neighbourhoods are able to perform a
perfect segmentation. These contradictory remarks could mean that
GrowCut with Neumann neighbourhood becomes trapped in some
local optima. Furthermore, in some cases, the extended neighbour-
hoods can help the algorithm improve the evaluation measure, even
if they required a larger computational effort.

Regarding the real-world images, by taking into account the mean
of iterations from Table 2, we can observe that the GrowCut is able to
perform the best segmentation by using extended Moore neighbour-
hood. If we take into account all the other performance criteria, the
best results are those obtained with the Moore neighbourhood.
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(a) 135037 (b) 135037 GT

Figure 3: Real-world image

(a) von Neumann neighborhood (b) Moore neighborhood

(c) extended von Neumann neighborhood (d) extended Moore neighborhood

Figure 4: Results obtained for image number 135037

0

20

40

60

80

100

120

140

160

180

circle square rectangle

# iterations

Moore Neumann Moore Ext Neumann E

Figure 5: Number of iterations required to segment each synthetic
image by considering the four neighbourhood topologies.
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Figure 6: Dice similarity for tested synthetic images by using all con-
sidered neighbourhoods
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Figure 7: Number of iterations required to segment several real-world images by considering the four neighbourhood topologies.
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Figure 8: Dice similarity for several real-world images by using all considered neighbourhoods

ITERATIONS DICE GCE HDRFDST MAHLNBS RNDIND VOLSMTY
Moore 102.150 ± 29.224 0.999 ± 0.000 0.002 ± 0.000 1.231 ± 0.161 0.001 ± 0.000 0.998 ± 0.000 0.999 ± 0.000

Neumann 98.544 ± 4.377 0.989 ± 0.001 0.033 ± 0.003 5.566 ± 0.179 0.016 ± 0.002 0.966 ± 0.004 0.990 ± 0.001
MooreExt 134.467 ± 4.994 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

NeumanExt 144.911 ± 4.746 1.000 ± 0.000 0.000 ± 0.000 0.122 ± 0.039 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 1: Average performances over all tested synthetic images for the considered neighbourhood topologies

ITERATIONS DICE GCE HDRFDST MAHLNBS RNDIND VOLSMTY
Moore 664.958±80.372 0.919±0.025 0.051±0.026 26.210±8.051 0.104±0.040 0.948±0.026 0.954±0.020

Neumann 564.039±60.022 0.908±0.031 0.056±0.026 30.176±8.480 0.119±0.042 0.943±0.026 0.951±0.020
MooreExt 545.300±61.228 0.910±0.025 0.059±0.029 34.704±12.816 0.120±0.037 0.940±0.029 0.949±0.023

NeumanExt 641.228±85.445 0.915±0.023 0.054±0.025 29.759±8.984 0.114±0.033 0.946±0.026 0.951±0.021

Table 2: Average performances over all tested real-world images for the considered neighbourhood topologies
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In the same time, for real-world images, if we compare the two
standard neighbourhoods (Moore versus Neumann), Moore neigh-
bourhood is better than Neumann in 6 cases out of 7. If we compare
the two extended neighbourhoods (Moore Ext versus Neumann Ext),
Moore Ext neighbourhood is better than Neumann Ext in only one
case out of 7 (when the iteration criterion is taken into account). If we
compare the standard neighbourhood with the extended one (Moore
versus Moore Ext and Neumann versus Neumann Ext, respectively),
we can observe that in 7 cases out of 14 the standard neighbour-
hood is better than the extended one and all these cases correspond
to Moore neighbourhood. In the case of Neumann neighbourhood,
the extended version is better than the standard one.

In a similar way we can compare neighborhoods taking into ac-
count the DICE similarity illustrated in Fig. 8. More precisely, if we
compare the two standard neighborhoods, Neumann neighborhood is
better only in one case out of 12 and also the difference between the
two measures in this case is almost insignificant, which means that
the Moore neighborhood is the best choice.

If we compare the extended neighborhoods, Moore extended is
better in 5 out of 12 cases, Neumann extended is better in 6 out of 12
cases and in the remaining case they have equal values. This means
that their performance depends on the characteristics of the images.

If we compare the standard neighborhoods with their extended
versions, we obtain that standard Moore neighborhood is more ef-
ficient in 7 out of 12 cases and we have one case of equality. In the
Neumann case, the extended version gives better results in 7 out of
12 images, which means that it is the best option between the two of
them.

Obtained results indicate that an adaptation schema could be in-
volved in the segmentation process (e.g. adapt the shape or the size
of the neighbourhood), depending on some features of the images.
From a statistical point of view, we cannot say which is the best
neighbourhood, more experiments being planned to be performed in
the future.

5 Conclusions and further work
The image segmentation problem was considered in this paper. A
CA-based segmentation algorithm, named GrowCut, has been inves-
tigated by considering different neighbourhood topologies. Several
real-world images and synthetic images have been used for conduct-
ing the study. The segmentation performance have been studied by
using different supervised measures. Results show how the neigh-
bourhood shape and size could influence the segmentation process.

This study will continue with the investigation of different topolo-
gies for 2D CAs for the image segmentation task, like using graph-
based CAs instead of grid-based CAs. Other unsupervised perfor-
mance measures will be investigated and analysed.
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Generic Convolutional Neural Network with Random
Pooling Area

Zhidong Deng 1 and Zhenyang Wang 2 and Shiyao Wang 3

Abstract. As an automated hierarchical feature extractor, deep con-
volutional neural network (CNN) is increasingly in the spotlight.
In order to further improve feature representation capabilities of
CNN, this paper proposes a novel SAPNet model that incorporates
a stochastic area pooling (SAP) method with a generic stacked T-
shaped CNN architecture. In our SAP method, pooling area is ran-
domly transformed and max pooling operation is then conducted on
such areas, which means that regular pooling area of fixed upright
squares are no longer exploited in the training phase of our SAPNet.
In a sense, it could be viewed as the use of feature-level augmenta-
tion. Meanwhile, we present a generic CNN architecture that struc-
turally resembles three stacked T-shaped cubes. In such architecture,
the number of kernels in convolutional layer preceding any pooling
layer is doubled and all learnable weight layers are combined with
batch normalization and dropout with a small ratio. Interestingly, all
SAPNets have the same structures and similar parameter settings on
different benchmarks. Finally, on CIFAR-10, CIFAR-100, MNIST,
and SVHN datasets, the experimental results show that our SAPNet
requires fewer parameters than regular CNN models but nevertheless
achieves superior recognition performances for all the four bench-
marks.

1 Introduction
A major problem for pattern recognition is how to represent features.
In the last decade, algorithmic level features such as SIFT, HOG, and
LBP have been demonstrated to make success in a variety of object
recognition applications. But traditional pattern recognition methods
are essentially based on manually selected features, which seems to
be getting dim compared to a sequence of impressive results achieved
by deep convolutional neural network (CNN) in many areas, partic-
ularly in computer vision and speech recognition, since 2012 [13].

Unbelievable recognition capabilities of CNN could be attributed
to automated hierarchical or multiple granularity feature extraction.
It functionally has resemblance to biological viusal cortex pathaway.
In recent years, extensive prominent CNN models have been emerg-
ing, although there still exist many unresolved problems. How to en-

1 State Key Laboratory of Intelligent Technology and Systems, Tsinghua
National Laboratory for Information Science and Technology, Department
of Computer Science, Tsinghua University, Beijing 100084, China, email:
michael@tsinghua.edu.cn

2 State Key Laboratory of Intelligent Technology and Systems, Tsinghua
National Laboratory for Information Science and Technology, Department
of Computer Science, Tsinghua University, Beijing 100084, China, email:
crazycry2010@gmail.com

3 State Key Laboratory of Intelligent Technology and Systems, Tsinghua Na-
tional Laboratory for Information Science and Technology, Department of
Computer Science, Tsinghua University, Beijing 100084, China, email: sy-
wang14@mails.tsinghua.edu.cn

hance feature representation capabilities of CNN and how to design
an generic but effective architecture increasingly become a research
hot topic.

Data augmentation is a simple but useful way to promptly improve
recognition and generalization capabilities of CNN. It can help ex-
pand data space and further enhance diversity of input images. In
this paper, we take advantage of such idea to investigate expansion
on feature map space. Accordingly, we propose a novel stochastic
area pooling (SAP) to better feature representation of CNN. Instead
of regular pooling areas of fixed upright squares, new pooling areas
in our SAP method could be randomly translated, scaled, and rotated
with a tiny fluctuation. Jaderberg et al. [10] introduce a spatial trans-
former network that input feature map is transformed. The difference
is that the transformations in spatial transformer network are a de-
terministic function of the input and the transformation parameters
and are explicitly optimized over, while the transformations in our
SAP method are randomly drawn from pre-specified distributions.
In addition, Jaderberg et al. aim at generating scale and rotation in-
variance features by introducing an addition learning-based spatial
transformer network, which requires a large amount of parameters
and computational cost. SAP, however, plays the role of feature-level
augmentation, bearing only a little extra computational burden.

Meanwhile, in order to simplify design of new convolutional mod-
els, we present a generic CNN architecture that structurally looks
like three stacked T-shaped cubes. In such architecture, the number
of kernels in convolutional layer just preceding any pooling layer is
doubled to overcome representational bottleneck [32]. All learnable
weight layers are embedded with regularization of batch normaliza-
tion, ReLU, and dropout with a small ratio of 0.1. As a result, all
SAPNets with different number of convolutional kernels in the first
convolutional layer have similar structures and parameter settings,
which are demonstrated to be stable, reliable, and efficient. In addi-
tion, we found out that the size of receptive field in the last convo-
lutional layer directly determines depth of CNN networks. For ex-
ample, on CIFAR-10, CIFAR-100, MNIST, and SVHN datasets, it is
sufficient to choose networks with 9-12 layers.

Finally, on CIFAR-10, CIFAR-100, MNIST, and SVHN bench-
marks, the experimental results show that our SAPNet requires fewer
parameters than regular CNN models but achieves excellent recogni-
tion performances. Specifically, our SAPNet-64 yields a state-of-the-
art test error of 5.57% on CIFAR-10. On CIFAR-100, the SAPNet-
64 achieves a test error of 27.59%. On MNIST, SAPNet-32 with 0.76
million parameters obtains a test error of 0.29%, which breaks record
on MNIST if there is no any data augmentation applied. On SVHN,
SAPNet-64 achieve a result of 1.71%, ranking the second place.

The paper is organized as follows: In Section 2, the related work is
reviewed. Section 3 proposes our SAP method for a generic CNN ar-
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Figure 1. Schematic diagram of stochastic area pooling

chitecture. Section 4 gives details on training and test of the SAPNet
and provides our experimental results. Finally, Section 5 concludes
this paper with a brief summary.

2 Related Work
Cognitron [3] and Neocognitron [4] are generally viewed as the ear-
liest CNN, where a few widely-used concepts in CNN such as con-
volution, pooling, receptive field, and ReLU are initially presented.
In 1989, error backpropagation was first introduced to Neocognitron
by LeCun et al. [14]. Since 2012, significant progress in very large
scale object classification task with CNN has been made due to very
efficient GPU implementation of convolution operation and regular-
ization for preventing overfitting [13]. From the outset of this, atten-
tion from both academic and industrial communities has been paid
to such deep CNN.

In the pipeline of CNN, pooling is a standard module, which could
help extract translation invariance features in terms of contiguous
pooling areas and stable pooling operation. In addition to regular de-
terministic pooling methods, such as max pooling and average pool-
ing operations, stochastic pooling is presented by Zeiler and Fergus
[34] through randomly picking activation within each pooling area
according to a multinomial distribution. This pooling is mainly used
to prevent over-fitting when training deep convolutional networks.
Lee et al. [16] propose a mixed/gate max-average pooling, which
improves pooling by pursuing a learnable pooling function to adapt
to complex and variable patterns. Furthermore, stochastic unpooling
is presented by Pu et al. [22] to link consecutive layers in deep gen-
erative models.

On visual object recognition datasets including CIFAR-10,
CIFAR-100, MNIST, and SVHN, there are also researchers work-
ing on applications of variants of CNNs. For instance, Maxout is
presented to improve model averaging techniques [6]. Network In
Network (NIN) proposed by [19] is used to enhance local discrim-
inability of model, where global average pooling simplifies classifi-
cation and prevents overfitting. Wan et al. [33] introduce DropCon-
nect as generalization of Dropout for regularizing fully-connected
layers. DasNet presented by [30] seems like powerful by allowing it
to focus its internal attention on some of convolutional filters. Lee et
al. [17] propose a deeply-supervised nets (DSN) and simultaneously

minimizes classification errors of hidden layers. Lately, a recurrent
CNN (RCNN) is presented by incorporating recurrent connections
into each convolutional layer [18], in order to integrate the context
information. Srivastava et al. [29] propose a novel highway network
that allows information flow across many layers on information high-
way. This work makes it possible to train a extreme deep model. In
the same year, a residual learning framework known as ResNet is de-
signed to ease training [8], which achieves great success on ILSVRC
2015, CIFAR-10, and COCO datasets.

3 SAPNet Method
In the following, a novel stochastic area pooling (SAP) method and
a generic CNN architecture with three stacked T-shaped cubes are
proposed and discussed.

3.1 SAP Layer
SAP consists of two consecutive steps: area selection and pooling
operation. As the first step, a pooling area is generated using ran-
dom affine transformation. Second, regular pooling operations such
as max or average pooling are conducted on such randomly trans-
formed areas, thus giving rise to output of SAP layer.

Instead of regular pooling on fixed square, the random pooling
area of SAP is transformed by an affine mapping: f : A→B, where
A∈Rn and B∈Rm stand for affine spaces. Assume x∈A indicates
an n-dimensional vector. The affine transformation can be repre-
sented as f(x) = Tx+ b, where T∈Rm×n denotes an affine trans-
formation matrix and b∈B a translation vector. In 2D case, we only
consider shift, rotate, and scale of four corners of a pooling area that
slides over feature maps, as shown in Figure 1.

Suppose that θ denotes angle of rotation, [cx, cy] coordinates of
a center point, [ox, oy] a shift vector, and [sx, sy] scaling factors.
We form a 7-tuple of parameters {θ, cx, cy, ox, oy, sx, sy} so as to
express such an affine transformation, i.e.,[

x′

y′

1

]
=

[
sx cos θ sy sin θ tx
−sy sin θ sx cos θ ty

0 0 1

][
x
y
1

]
(1)

tx = cx(1− sx cos θ)− cysy sin θ + ox (2)

10



ty = cx(1 + sy sin θ)− cysx cos θ + oy (3)

Actually, pooling area in SAP is produced by assigning a random
distribution to each parameter. The Gaussian distribution that each
parameter must satisfy is given below,

θ ∼ N(0, σθ), (4)

cx, cy ∼ N(0.5d, σc) (5)

sx, sy ∼ N(1, σs) (6)

where standard deviations σθ , σc and σs are called hyper-parameters,
which should be pre-specified before training, and d indicates the
height or width of incoming feature map.

Note that pixels within random pooling areas are usually trans-
formed onto non-integral boundaries. Thus bilinear interpolation is
required before pooling operation.

During every forward pass, a set of different affine transformation
parameters are randomly generated produced via Equations (4), (5),
and (6). After that, these transformation parameters or the resulting
pooling areas in the SAP layer remain unchanged and are not opti-
mized over during either forward pass or back-propagation. Sequen-
tially, max pooling is then done on such areas. Apparently, our SAP
layer has the same forward and backward pass as that for regular max
pooling except for transformed pooling area.

In the test phase, we set the standard deviations of parameters
σθ = 0, σc = 0, and σs = 0 for the SAP layers, which means that
we employ the same fixed upright pooling squares as that of regular
pooling method.

3.2 Stacked T-shaped Cubic Architecture
In addition to pooling strategies, design of CNN architecture is also
crucial to improvements in capabilities of hierarchical feature repre-
sentation. Basically, this used to be an empirical trick. For example,
VGG [23] and GoogLeNet [31] suggest that deeper network architec-
ture, smaller receptive field, and finer stride can help improve recog-
nition accuracy. But some of lately published experimental results
show that accuracy become stagnant or even degradation as depth
going deeper [8]. In the study of [32], it is demonstrated that model
design should avoid representational bottleneck problems originated
from [32], especially early in network. In fact, how to find an appro-
priate value of depth, how to configurate convolutional and pooling
layers, how to select the size and number of convolutional kernels
/pooling areas, and even how to prevent overfitting for specific prob-
lem are open problem.

Table 1. The architecture of SAPNet.

SAPNet-16 SAPNet-32 SAPNet-48 SAPNet-64
conv3-16 conv3-32 conv3-48 conv3-64
conv3-32 conv3-64 conv3-96 conv3-128

Stochastic area pooling (SAP) layer
conv3-32 conv3-64 conv3-96 conv3-128
conv3-32 conv3-64 conv3-96 conv3-128
conv3-64 conv3-128 conv3-192 conv3-256

Stochastic area pooling (SAP) layer
conv3-64 conv3-128 conv3-192 conv3-256
conv3-64 conv3-128 conv3-192 conv3-256
conv3-128 conv3-256 conv3-384 conv3-512

Global average pooling layer
Softmax layer

Figure 2. Generic CNN architecture with three stacked T-shaped cubes.

In this paper, we deliberately design a generic CNN architecture
that structurally looks like three stacked T-shaped cubes (shown in
Figure 2), together with two SAP layers as separator. Note that the
number of kernels in convolutional layer preceding each pooling
layer is always doubly expanded. We call such a general model as
SAPNet. The SAPNet architecture with different kernel sizes is listed
in Table 1. It is clearly observed that all SAPNets have the same
structures and similar parameter settings. Specifically, every SAPNet
comprises three T-shaped ensembles and one softmax layer, each of
ensembles containing three convolutional layers. A total of 9 con-
volutional layers are separated by two SAP layers and single global
average pooling layer.

In SAPNet, all convolutional layers make use of small receptive
fields of 3× 3 with padding of 1 so as to preserve spatial resolution.
In two SAP layers, we take 2 × 2 initial pooling areas with stride
of 2. Following the last convolutional layer, single global average
pooling is adopted. Similarly, we exploit a softmax layer as the final
output. Additionally, all learnable weight layers are embedded with
regularization of batch normalization (BN) [9], ReLU nonlinearity,
and dropout with a small ratio of 0.1. The BN adopted in this paper
is slightly different from [9]. Our modified BN is only for normaliza-
tion without any scale and shift operations.

In SAPNet, the depth of network is always set to be 9, although it
is not the best one (also see Table 2). Apparently, comparison given
in Table 2 is unfair because deeper models need more computation
and parameters. It is clear to see from Table 2 that models with 9-
12 layers are sufficient for such a task, among which 9-layer model
has the least computation and parameters. In fact, the selection of
model depth depends on the size of receptive field in a sense. Specif-
ically, the size of receptive field in the last convolutional layer, which
is gradually enlarged as network going deeper, directly determines
depth of CNN networks. As the last convolutional layer’s receptive
field reaches as about 1.5-2.0 times large as raw input image size,
recognition accuracy is expected to come to peak. A continuously
increase of depth seems to be unfavorable to improvements in per-
formance. For CIFAR-10, CIFAR-100, MNIST, and SVHN datasets,
we could choose networks with 9-12 layers as a compromise solu-
tion.
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Table 2. The performance of generic CNN network architecture with different depths. ’Architecture’ row specifies the structure of each CNN network. For
instance, ’2331’ means that this CNN network is composed of two convolutional layers, one max pooling layer, three convolutional layers, one max pooling

layer, three convolutional layers, one global average pooling layer, and one softmax layer.

#layers 7 8 9 10 11 12 13 14 15
Architecture 2221 2321 2331 2431 2441 2541 2551 2651 2661

Test error (%) 10.09 8.77 8.53 8.35 7.93 7.65 7.86 7.63 7.77
Receptive field 32 36 44 48 56 60 68 72 80

#parameter 0.57 M 0.61 M 0.76 M 0.80M 0.94M 0.98M 1.13 M 1.16 M 1.31M

In order to resolve representational bottleneck problems [32], a
simple but effective way is to double the number of internal outputs
or convolutional kernels. The size of the representation is defined as
the product of the number of channels and the resolution of each fea-
ture map. In general, it should gently decrease from the inputs to the
last convolutional layer, which means that one should avoid repre-
sentational bottlenecks or the loss of features with extreme or sharp
compression. Otherwise, it is probably unable to sufficiently repre-
sent raw input images. Considering that pooling operations actually
reduce resolution of feature maps but make no change to the number
of channels, it is likely to lead to representational bottlenecks. For the
sake of this, it is necessary to double the number of channels prior to
pooling.

Additionally, we need to maintain computational balance for all
layers in SAPNet. In a convolutional layer, both the size of incoming
feature maps and the number of kernels jointly determine computa-
tional cost of this layer. Owing to the fact that the size of incoming
feature maps is shrunk through pooling, we should accordingly raise
the number of kernels in such convolutional layer so as to keep com-
putational balance for each layer. Moreover, we stack three convolu-
tional layers to form an ensemble for further balancing computational
cost.

3.3 Discussions

In this paper, we propose a high-performance SAPNet that combines
our SAP method with a generic CNN architecture.

In the SAP method, the pooling areas, instead of the transformed
input feature maps in the spatial transformer network [10], are gen-
erated using random affine transformation and not optimized over.
On such randomly shifted, rotated, and scaled areas, we conduct
max pooling operation in the way like that in regular pooling. Es-
sentially, the SAP plays the role of feature-level augmentation rather
than data augmentation. Considering that the pooling areas fluctuate
in a small range of angle, shift, and scale, it allows significant ran-
dom image transformation with a little extra computational burden.
Although SAP itself is unable to bring either any scale invariance
or any rotation invariance, it can provide extensive multi-scale and
multi-orientation features to next convolutional layers. In terms of
performing max pooling operations merely on randomly transformed
areas instead of regular fixed squares, there is almost no difference
in efficiency as compared to regular CNNs.

On the other hand, we design a generic CNN architecture with
three stacked T-shaped cubes (Figure 2), which can balance computa-
tional burden and avoid representational bottlenecks. We use dropout
with a small ratio of 0.1 after each convolutional layer. It is quite
different from the others, where dropout is often employed only for
fully-connected layers or the last few convolutional layers. We do
believe that the use of dropout with a small ratio and modified BN
are capable of avoiding overfitting effectively. Interestingly, with the
same BN and dropout, identical CNN architecure, e.g., SAPNet-32,

is able to have superior performances even if applied on different
datasets. It seems to be generic, stable, and efficient.

The experimental results given in Table 2 also illustrate that the
selection of model depth depends on the size of receptive field. We
could provide an inexact explanation below. If we would ignore non-
linearity and normalization, the entire CNN only contains convolu-
tional and pooling operations. We could multiply all convolutional
kernels to get a total of kernel until receptive field is enlarged to
larger than visual object to be classified. If one continues to increase
the depth or multiply more kernels, it is helpless to further improve
recognition accuracy.

4 Experimental Results
4.1 Overall Parameter Settings
SAPNet is implemented based on the framework of caffe [11]. All the
experiments are conducted on two GPUs with data parallelism. We
test our SAPNets on four benchmark datasets: CIFAR-10, CIFAR-
100, MNIST, and SVHN. For each dataset, three networks with dif-
ferent parameters are tested for comparison. As an exceptional case,
we accomplish more experiments on CIFAR-10 so as to validate ef-
fectiveness and efficiency of our method.

In all the experiments, we train our model by stochastic gradient
descent (SGD) algorithm with batch size of 96. The initial learning
rate is set to 0.01 and is dropped by a constant factor of 10 whenever
the loss begins to reach an apparent plateau. We repeatedly decrease
the learning rate 3 times, until it arrives at 1e-5. A momentum of 0.9
is adopted during the entire training process to make SGD stable and
fast. All the learnable parameters exploit the same weight decay of
0.004. Following each convolutional layer, dropout with a small ratio
of 0.1 is performed. We set the standard deviations of parameters
σθ = 5◦, σc = 0.25d and σs = 0.01 for the SAPs. The maximum
fluctuations may take 2-3 times of them.For all the datasets, image
samples are pre-processed only with removing pre-pixel means.

4.2 CIFAR-10
We begin our experiments with CIFAR-10 [12] and pay more atten-
tion on it, in order to verify our method. CIFAR-10 dataset consists
of 60,000 32x32 color images with 10 classes. The dataset is divided
into five training batches and one test batch, each with 10,000 im-
ages.

Table 3. Comparison with other pooling methods on CIFAR-10.

Model #parameter Test error (%)
Max pooling 0.76 M 8.53
Average pooling 0.76 M 8.13
Stochastic pooling 0.76 M 8.50
SAPNet-32 0.76 M 7.56
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As shown in Table 3, we first compare the SAP with the other pool-
ing methods. In the experiments, we exploit the same three stacked
T-shaped network architecture as SAPNet-32 for the sake of com-
parison. Surprisingly, all the test errors in Table 3 surpass the exist-
ing state of the art results listed in Table 5. It should be attributed
to generic CNN architecture deliberately designed in Section 3.2. In
fact, the generic CNN architecture is able to avoid representational
bottleneck. Specifically, an appropriate depth like 9 layers makes the
network generalize well. In addition, using the dropout layer with
a small ratio just after each convolutional layer is also critical. It is
demonstrated to be capable of preventing overfitting effectively, es-
pecially when implementing it with BN regularization.

From Table 3, it is easy to see that SAP achieves superior perfor-
mance when using the SAP in place of regular pooling in standard
CNN architectures. The reason is that the use of random pooling ar-
eas can be viewed as feature-level augmentation. It may perturb fea-
ture extractions and thus enhances the generalization ability of CNN.
This is also the motivation of constructing stochastic pooling area.

Table 4. Comparison with max pooling for regular fixed square on
CIFAR-10.

Model #params Test error (%)
MaxNet-32 0.76 M 8.53
MaxNet-48 1.71 M 7.69
MaxNet-64 3.03 M 7.01
SAPNet-32 0.76 M 7.56
SAPNet-48 1.71 M 7.02
SAPNet-64 3.03 M 6.61

To give an intuitive insight into performance improvements, we
investigate several models with different parameter sizes, as pre-
sented in Table 3. Apparently, SAPNet performs better than MaxNet
in terms of the same parameter size. One interesting thing is that
SAPNet-32 performs as excellent as MaxNet-48, while SAPNet-48
is able to rival MaxNet-64. On the basis of SAPNet, a small model
with fewer parameters may result in nearly the same performance
as a big model. Actually, SAPNet helps save about half of param-
eters without any obvious loss of accuracy. In other words, SAP-
Net exploits much smaller models to reach similar accuracy, because
it significantly improves generalization ability through feature-level
augmentation.

We then make comparison of SAPNet with the state of the art
models on CIFAR-10 (Table 5). Three SAPNet models with different
parameter sizes are tested. All of the three SAPNets outperform the
existing models. Even for SAPNet-32 with the smallest size, it only
has 0.76 million parameters and still exceeds the existing state of
the art Tree+Max-Avg [16]. SAPNet-64 breaks record once again
and achieves a test error of 6.36% on CIFAR-10 without any data
augmentation. Note that SAPNet-64 is repeatedly tested 5 times so
as to ensure that the result is reliable.

In order to keep consistent with the previous work, we also test our
SAPNet models on CIFAR-10 using data augmentation of translation
and horizontal flipping. We randomly crop a portion of 24x24 pix-
els from original images and flip it horizontal randomly. Five 24x24
crops from four corners and one center w.r.t.their horizontal flipping
crops are tested. The final test result is given using average of all the
ten crops’s outputs. Using nearly the same parameters, SAPNet-48
is superior to Tree+Max-Avg [16]. Most importantly, SAPNet-64
yields a test error of 5.57%. The best result on CIFAR-10 is obtained
by Fractional MP [7]. But it employs extreme data augmentation,
including randomized mix of translation, rotation, reflection, stretch-

Table 5. Comparison with existing models on CIFAR-10 with and without
data augmentation.

Model #parameter Test error (%)
Without data augmentation

Maxout [6] >5 M 11.68
Prob maxout [27] >5 M 11.35
DasNet [30] >5 M 9.22
NIN [19] 0.97 M 10.41
DSN [17] 0.97 M 9.69
RCNN [18] 1.86 M 8.69
ALL-CNN [26] 1.3 M 9.08
Tree+Max-Avg [16] 1.85M 7.62
SAPNet-32 0.76 M 7.56
SAPNet-48 1.71 M 7.02
SAPNet-64 3.03 M 6.36(6.50±0.14)

With data augmentation
Maxout [6] >5 M 9.38
Prob maxout [27] >5 M 9.39
dasNet [30] >5 M 9.22
DropConnect [33] 5 networks 9.32
NIN [19] 0.97 M 8.81
DSN [17] 0.97 M 7.97
RCNN [18] 1.86 M 7.09
Highway network [29] 2.3 M 7.54(7.72±0.16)
ALL-CNN [27] 1.3 M 7.25
ResNet [8] 1.7M 6.43(6.61±0.16)
Fitnet4-LSUV [20] 2.5M 6.06
Tree+Max-Avg [16] 1.85M 6.05
Tuned CNN [24] 1.29M 6.37
SAPNet-32 0.76 M 6.77
SAPNet-48 1.71 M 5.92
SAPNet-64 3.03 M 5.57(5.66±0.09)

Extreme data augmentation
Large ALL-CNN [25] - 4.41
Fractional MP [7] - 3.47

ing, and shearing operations.

4.3 CIFAR-100

CIFAR-100 [12] is just like CIFAR-10, excluding 100 classes in-
volved. They have the same sizes of training and test datasets as
CIFAR-10. In this case, each class in CIFAR-100 only contains 1/10
samples compared to CIFAR-10. Using the same parameter settings
as that on CIFAR-10, we test three SAPNet models on CIFAR-100
without any data augmentation, as listed in Table 6. It is readily
observed that SAPNet-64, which achieve a test error of 27.59%, is
merely inferior to ELU-Network [2] if there is no any data augmen-
tation applied, ranking the second place. Note that SAPNet-64 only
exploits 8% of parameters compared to ELU-Network.

4.4 MNIST

MNIST is a handwritten digits dataset with dights from 0 to 9 [15].
It contains a training dataset of 60,000 samples and a test dataset
of 10,000 ones. The digits have been centered and size-normalized
to 28x28 grayscale images. MNIST is much simpler compared to
CIFAR-10. As a result, even small models with fewer parameters
can also work well. On such a benchmark, we test two small models
of SAPNet-16 and SAPNet-32 without data augmentation. All pa-
rameter settings keep the same as CIFAR-10. The comparison with
other existing CNN models is listed in Table 7. With 0.19 million
parameters, SAPNet-16 obtains the same test error as RCNN-96 that
requires 0.67 million parameters [18]. Furthermore, SAPNet-32 with
0.76 million parameters achieves a test error of 0.29%, which breaks
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Table 6. Comparison with existing models on CIFAR-100.

Model #parameter Test error (%)
Without data augmentation

Maxout [6] >5 M 38.57
Prob maxout [27] >5 M 38.14
DasNet [30] >5 M 33.78
Tree based priors [28] - 36.85
NIN [19] 0.98 M 35.68
DSN [17] 0.98 M 34.57
RCNN [18] 1.87 M 31.75
ALL-CNN [27] 1.30 M 33.71
Tree+Max-Avg [16] 1.76 M 32.37
ELU-Network [2] 39.32 M 24.28
SAPNet-32 0.76 M 32.22
SAPNet-48 1.71 M 29.32
SAPNet-64 3.03 M 27.59

With data augmentation
Highway Network [29] 2.30 M 32.24
Fitnet4-LSUV [20] 2.5 M 27.66
Tuned CNN [24] 1.29 M 27.40

Extreme data augmentation
Fractional MP [7] - 26.39

record on MNIST if not considering any data augmentation. In gen-
eral, a test error of 0.21% on MNIST is regarded as the best result
[33]. But it apparently attributes to complex data augmentation and
model averaging of up to 5 nets. Actually, performance of single
network in DropConnect is worse than 0.29%, which is a test error
yielded using our SAPNet-32.

Table 7. Comparison with existing models on MNIST.

Model #parameter Test error (%)
Without data augmentation

Maxout [6] 0.42 M 0.45
NIN [19] 0.35 M 0.47
DSN [17] 0.35 M 0.39
RCNN [18] 0.67 M 0.31
Tree+Max-Avg [16] 1.85 M 0.31
FitNet-LSUV-SVM [20] 0.03 M 0.38
SAPNet-16 0.19 M 0.31
SAPNet-32 0.76 M 0.29

With data augmentation
DropConnect [33] 5 networks 0.21
MCDNN [1] 35 networks 0.23

4.5 SVHN

SVHN [21] is a real-world image dataset, which is acquired from
house numbers in Google street view images. Among two formats
provided by such a dataset, we only use the second format. In fact,
SVHN is much more difficult than MNIST, since multiple digits may
visibly occur within each image. It contains 630,420 color images of
size 32x32, divided into 73,257 images for training, 26,032 digits
for testing, and an extra 531,131 additional somewhat less difficult
samples for training. When multiple digits exist in one image, we
only need to recognize the center one.

We follow training and test procedures given by [6]. In the ex-
periment, this paper randomly selects 400 training samples per class
from the training dataset and 200 validation samples per class from
the extra dataset. As described before, we employ the same param-
eter settings and have no extra data pre-processing or augmentation.

Table 8. Comparison with existing models on SVHN.

Model #parameter Test error (%)
Without data augmentation

Maxout [6] >5 M 2.47
Prob maxout [27] >5 M 2.39
NIN [19] 1.98 M 2.35
DSN [17] 1.98 M 1.92
RCNN [18] 2.67 M 1.77
Tree+Max-Avg [16] 4.00M 1.69
SAPNet-32 0.76 M 1.87
SAPNet-48 1.71 M 1.75
SAPNet-64 3.03 M 1.71

With data augmentation
Multi-digit number recognition [5] >5 M 2.16
DropConnect [33] 5 networks 1.94

On SVHN benchmark, we test three SAPNet models that have dif-
ferent convolutional kernel sizes. Our experimental results illustrate
that SAPNet-64 yields a test error of 1.71% on SVHN, which is only
0.02% less than the state of the art model Tree+Max-Avg [16]. It is
the second ranked CNN model.

5 Conclusion
In this paper, we propose a new SAPNet model. First, a SAP pooling
method is presented, where pooling area is randomly transformed. It
expands feature map space and thus greatly decreases model parame-
ters. Second, a generic CNN architecture that looks like three stacked
T-shaped cubes is designed. In such architecture, the number of ker-
nels in convolutional layer preceding any pooling layer is doubled
and all learnable weight layers are combined with batch normaliza-
tion and dropout with a small ratio. Finally, the experimental results
show that our SAPNet requires fewer parameters than classic CNN
models. Our SAPNet-64 yields state of the art test error of 5.57% on
CIFAR-10. On CIFAR-100, the SAPNet-64 achieves a test error of
27.59%. On MNIST, the SAPNet-32 with 0.76 million parameters
receives the best result of 0.29%. Our SAPNet-64 obtains a test error
of 1.71% on SVHN benchmark, which is ranked second in all the
existing machine learning models.
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The Storage And Analytics Potential Of
HBase Over The Cloud: A Survey

Georgios Drakopoulos and Andreas Kanavos and Vasileios Megalooikonomou1

Abstract. Apache HBase, a mainstay of the emerging Hadoop
ecosystem, is a NoSQL key-value and column family hybrid
database which, unlike a traditional RDBMS, is intentionally de-
signed to scalably host large, semistructured, and heterogeneous
data. Prime examples of such data are biosignals which are character-
ized by large volume, high volatility, and inherent multidimension-
ality. This paper reviews how biomedical engineering has recently
taken advantage of HBase, with an emphasis over cloud, in order to
reliably host cardiovascular and respiratory time series. Moreover,
the deployment of offline biomedical analytics such as the Hilbert-
Huang transform over HBase is explored.

1 INTRODUCTION
Biosignal analysis constitutes an integral part of biomedical engi-
neering. In a typical scenario, long cardiovascular and respiratory
time series from a large number of subjects are stored in a database
system, possibly along with other relevant information such as vir-
tual patient model, electronic health records, sensor recordings from
smart homes, daily activity reports from smart clothes, and biochem-
ical blood examination results. Although the above data may already
have been passed as input to a lightweight online analytics system,
the bulk of the analysis will be conducted in an offline system.

This holds especially true in group analysis settings with a large
number of subjects, where computational requirements for even ba-
sic analytics can easily become overwhelming. For instance, in order
to obtain empirical estimates of the variance and the kyrtosis coeffi-
cient in a set of n time series each of length p the magnitudes of the
number of operations τv and τk respectively are

τv = O

((
n

2

)
p

)
= O

(
pn2) (1)

and

τk = O

((
n

3

)
p

)
= O

(
pn3) (2)

The direct computation of even τv for either a large p or n is
prohibitively expensive. Although efficient sublinear methodologies
which can become the algorithmic cornerstone of a number of an-
alytics have been proposed [2][21], it is clear that the storage and
analysis infrastructure should be able to scale with p and n. This
includes not only the algorithmic cost but also the actual implemen-
tation complexity such as memory and disk requirements, network
protocols and the associated stack size, as well as redundancy and
fault tolerance [41][39][30][31][33].

1 University of Patras, Rion Campus Building B, Patras 26500 Hellas, email:
{drakop,kanavos,vasilis}@ceid.upatras.gr

Two interrelated challenges common in biomedical signal pro-
cessing are the number and the patterns of missing values and out-
liers, both in their own way important when forming data mining and
machine learning algorithms for biomedical data. Although random
missing values can be expected, especially in manual data input or
annotation, systematic ones may well indicate equipment malfunc-
tion or even a methodological error. On the other hand, outliers, pro-
vided they can be safely attributed to the subject under study, may
be generated by an unknown or rare physiological state worth inves-
tigating. Therefore, depending on the context, outliers might carry a
significant semantic weight. Moreover, both missing values and out-
liers play an important role to biosignal compression, representation,
and modelling [14][32][39][40][4][42].

The primary contribution of this survey is the exploration of ap-
plications of HBase in bioengineering and specifically in the offline
analysis of large cardiovascular and respiratory time series. More-
over, key-value and column family databases are briefly overviewed.
Finally, the scientific literature for analytics for offline biosignal pro-
cessing is summarized.

The remainder of this survey is organized as follows. Section 2
briefly overviews scientific literature regarding NoSQL databases
and HBase. Fundamental cloud properties are explained in section
3. Section 4 outlines the characteristics of cardiovascular and respi-
ratory biosignals. Finally, research directions are discussed in 5.

2 ACID or BASE?

Although the heading might seem as a chemistry question, it is es-
sentially a choice over database operating requirements. Recently, at
least partly due to the advent of the Internet of Things (IoT), the Se-
mantic Web, and pervasive computing, new database paradigms have
been developed resulting in a database family collectively known as
NoSQL databases whose key points are summarized in properties
1 and 2. Table 1 summarizes the four primary NoSQL technolo-
gies, namely the key-value, column family, document, and graph
databases [16][15][18]. HBase is considered a hybrid between key-
value and column family databases.

Database Data type
Graph Linked data and conceptual graphs
Key-value Associative or key-value array
Document JSON or BSON documents
Column family Wide and recursively nested tables

Table 1. NoSQL data types.
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Property 1 [15] NoSQL databases are schemaless.

Property 2 [26][34] The characteristics of NoSQL databases are:

• Basic Availability. The database is operational most of the time.
The percentage of downtime depends on the local operational re-
quirements.

• Soft state. The database does not have to be write consistent. Also
replicas do not have to be mutually consistent sometimes.

• Eventual consistency. Replicas may be inconsistent temporarily.

Theorem 1 Brewer CAP theorem [9][8][7]: A database system can
at most possess simultaneously two of the following three properties:
Consistency, Atomicity, and Partition tolerance.

Figure 1. CAP theorem and HBase.

HBase is a sparse, distributed, persistent multidimensional sorted
map database management system running on top of a distributed file
system, typically HDFS. It is an ongoing, top level Apache project
and an integral part of the Hadoop ecosystem. Its primary character-
istic is that it is open source, distributed, and non-relational. Accord-
ing to the CAP theorem, it is a CP database. Also, in the NoSQL tax-
onomy it is a combination of key-value and column family databases
[27][24].

The primary data structure of HBase, at least conceptually, is the
associative array. As such, design principles for HBase differ from
those of the relational world. HBase shares the same data model with
Google BigTable [11][28]. In HBase tables comprise of rows and
columns, with data rows having a sortable key and an arbitrary num-
ber of columns. Tables are sparsely stored, so that rows in the same
table can have widely-varying columns, if so deemed by the applica-
tion. HBase is tuned for sparse data stored in a few wide rows which
can be used as input or output of MapReduce jobs over Hadoop
[22]. Internally the data are placed in indexed StoreFiles that exist
on HDFS for high-speed lookups [28].

An HBase table comprises of a set of regions, each stored in a
region server [10]. Regions form the basic data building blocks of
HBase and as such they are heavily employed by the underlying
Hadoop framework [36]. The region contains store objects that corre-
spond to column families as well as MemStore, an in-memory write
cache [10][6][1][13]. Region rebalancing is a critical performance
issue handled by the HMaster component.

Delving deeper, HBase relies on Bloom filters in order to index the
sparse data [25]. A critical requirement is that rows should be sorted
according to the key value. Therefore, rows with keys which are
close, lexicographically or otherwise depending on the key nature,
are very likely to be physically stored to the same machine. There-
fore, choosing a row key convention is of paramount importance. For

example, in a table whose keys are domain names it makes the most
sense to list these names in reverse order notation so that rows about
a subdomain will be near the parent domain row.

Finally, Apache project Phoenix attempts to bridge HBase with
the relational world by allowing the formulation of SQL queries and
the use of OLTP analytics over Hadoop for low latency applications.
Thus, existing SQL and JDBC APIs with full ACID transaction ca-
pabilities can be used over an HBase backbone.

3 THE CLOUD AND THE *aaS MODELS
The cloud is an efficient way of distributing and abstracting compu-
tational resources [23]. Besides massive scalability, it offers efficient
and decentralized resource management including sharing. Thus, as-
set utilization is typically high. The cloud comes at three major ser-
vice abstraction levels, namely IaaS, PaaS, and SaaS, depending on
the operational requirements.

Infrastructure as a Service (IaaS) model offers the least resource
abstraction layer. Still, there is a broad range of virtual services in-
cluding computing hardware, location, data partitioning, scaling, se-
curity, and backup [28]. Besides these basic services, IaaS clouds of-
ten offer additional resources such as a virtual-machine disk-image
library, raw block storage, file or object storage, firewalls, load bal-
ancers, IP addresses, virtual local area networks (VLANs), and soft-
ware bundles. A hypervisor or, in rare cases, even a powerful main-
frame acts as the host to a number of guest virtual machines. Pools of
hypervisors within the cloud OS can support large numbers of guests
as well as an impressive scaling capability [13]. IaaS is the model
of choice mainly for network and database administrators. A prime
example is Amazon Elastic Compute Cloud, an IaaS cloud platform
available to both industry and academia [5][12].

Platform as a Service (PaaS) aims at higher abstraction and less re-
source management at the expense of reduced customization flexibil-
ity. It is commonly selected to provide a reliable and integrated work-
ing environment to application developers. As such, PaaS places em-
phasis on virtual hardware diversity for facilitating testing purposes
as well on software tools like dynamic OS libraries, development and
execution environments, databases, and Web servers. PaaS end users
do not directly manage the underlying cloud infrastructure such as
network interface cards, servers, or storage. PaaS is further divided
to Integration PaaS (iPaas) and Data PaaS (dPaaS), where the former
facilitates rapid software development and the latter is oriented to-
wards data intensive application creation and testing. PaaS examples
include Microsoft Azure and Google App Engine.

Software as a Service (SaaS) model, finally, is used primarily in
order to access and manage application software and databases. Un-
der SaaS users have less flexibility compared to PaaS in order to
achieve maximum standardization and ease of installation and main-
tenance. Consequently, typical users include IT and devops person-
nel and small business administrators, back end operators, or power
users. Under SaaS the cloud framework is less transparent and con-
figurable, as only a few software components are directly controlled,
but at the same time it is more reliable, especially for novice users.

4 BIOSIGNALS IN HBase
HBase has been the database of choice or a number of applications
where biosignals had to be saved and processed. For instance, the
efficient processing of clinical signal data was a vital step towards
multivariate analysis in order to develop better ways of describing
the clinical status of a patient in [28]. Additionally, in [36], a novel
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approach for storing and processing clinical signal data, including
ECG, based on the Apache HBase distributed column-store and the
MapReduce programming paradigm with an integrated web-based
data visualization layer is presented. In this work, authors proposed a
system where the computation was parallelized, thus trying to resolve
the problem of increasing numbers of sensors and resulting data.

Authors in [29] present the notion of Health Monitoring as a Ser-
vice (HMaaS) in a cloud-based personal health sensor data man-
agement platform. The proposed framework will act as a host to an
ecosystem of scientists, medical practitioners, developers, as well as
professionals with the aim of publishing their data analysis models
as utilities in the cloud. Authenticated users can access those services
and utilize their collected sensor data without any expert knowledge.
The feasibility of this approach is supported by an ECG-based health
monitoring service application deployed in addition to the main sys-
tem.

Finally, in [20] a quick method for regularizing long ECG signals
based on finite differences was proposed. This method is based on
a tradeoff between two factors, one measuring the distance of the
desired regularized version from the raw data and the other measur-
ing the smoothness of the regularized data version. As noted, this
approach is almost linearly scalable and HBase over cloud can pro-
vide a viable framework for such a scaling. This infrastructure would
be also beneficial to the spectral analysis proposed in [38] for ECG
signals, as the performance HBase can be fine-tuned to efficiently
answer queries regarding the spectral content of the original ECG
data.

5 DISCUSSION

This survey serves as a starting point for describing how HBase over
the cloud can serve as a viable alternative for storing and analysing
offline large biosignals with an emphasis to cardiovascular and res-
piratory time series. A number of examples has been described while
the infrastructure description was intentionally kept on a minimum,
as it is transparent to the end user.

Future research directions include the deployment of HBase as
part of multimodal medical information processing architectures
such as the one proposed in [19], where database interoperability
and transparency plays a crucial role to data fusion. HBase over the
cloud can be a scalable means for storing medical documents once
they have been retrieved by specialized information retrieval systems
such as [17], where a tensor-based retrieval system utilizing MeSH
was proposed for document search in PubMed. Also, biomedical as-
sociation rules mining outlined in [35] can be converted to be com-
patible with NoSQL operating parameters instead of relational ones
and stored in such a system.

As a concluding remark, signs from computer fields are encour-
aging regarding the adoption of HBase. In social media analysis a
cloud-based architecture was proposed in [3]. Authors aim at creat-
ing a sentiment analysis tool for Twitter data based on Apache Spark
cloud framewor. There tweets are classified tweets using supervised
learning techniques. Also, some pre-processing steps are introduced
for achieving better results in sentiment analysis, whereas the clas-
sification algorithms are used for both binary and ternary classifica-
tion. The proposed system was trained and validated with real data
crawled by Twitter and in following results are compared with the
ones from real users. In addition, in [37], authors present a novel
method for Sentiment Learning in the Spark framework; the pro-
posed algorithm exploits the hashtags and emoticons inside a tweet,
as sentiment labels, and proceeds to a classification procedure of di-

verse sentiment types in a parallel and distributed manner.
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Experimental and causal view on information integration
in autonomous agents

Philipp Geiger1 and Katja Hofmann2 and Bernhard Schölkopf 3

Abstract. The amount of digitally available but heterogeneous in-
formation about the world is remarkable, and new technologies such
as self-driving cars, smart homes, or the internet of things may fur-
ther increase it. In this paper we examine certain aspects of the prob-
lem of how such heterogeneous information can be harnessed by au-
tonomous agents. After discussing potentials and limitations of some
existing approaches, we investigate how experiments can help to ob-
tain a better understanding of the problem. Specifically, we present
a simple agent that integrates video data from a different agent, and
implement and evaluate a version of it on the novel experimentation
platform Malmo. The focus of a second investigation is on how in-
formation about the hardware of different agents, the agents’ sensory
data, and causal information can be utilized for knowledge transfer
between agents and subsequently more data-efficient decision mak-
ing. Finally, we discuss potential future steps w.r.t. theory and exper-
imentation, and formulate open questions.

1 Introduction
Increasing amounts of heterogeneous information are recorded and
connected, and this trend is likely to continue in the light of new
technology such as self-driving cars, smart homes with domestic
robots, or the internet of things. Intuitively, it makes sense to de-
sign autonomous agents in a way that they automatically integrate all
relevant and well-structured information on their environment that is
available. Various aspects of the problem of designing such agents
have been investigated previously. In this paper we approach the
problem from two directions which, to our knowledge, have not been
(exhaustively) examined yet: using sophisticated simulated experi-
ments, on a practical level, and causal models, on a more theoretical
level. The complexity of the problem allows us only to take small
steps.

1.1 Main contributions
The main contribution of this paper consists of two investigations:

• In Section 5 we use a simulated experimentation platform Malmo
to obtain a better understanding of the problem of integrating het-
erogeneous information. More specifically, we present a simple
agent that harnesses video data from a different agent, and imple-
ment and evaluate a version of it.

1 Max Planck Institute for Intelligent Systems, Tübingen, Germany; email:
philipp.geiger@tuebingen.mpg.de

2 Microsoft Research Cambridge, Cambridge, United Kingdom; email:
katja.hofmann@microsoft.com

3 Max Planck Institute for Intelligent Systems, Tübingen, Germany; email:
bs@tuebingen.mpg.de

• In Section 6 we investigate how detailed information on the hard-
ware of different agents (we consider self-driving cars as exam-
ple), their sensory data, and physical or causal information can
be utilized for knowledge transfer between them and subsequent
more data-efficient decision making.

The common structure of both investigations is that we start with
a description of a scenario that captures certain core aspects of the
general problem, in particular containing a variety of heterogeneous
information sources, and then sketch a method to perform informa-
tion integration and subsequent decision making in these scenarios.
After experimentally evaluating the method, or illustrating it based
on a toy example, we conclude both investigations with a discussion
of the advantages and limitations of the respective methods.

A reoccurring theme in our investigations is that we try to treat as
much information (including models) as possible explicitly as input
to algorithms instead of implicitly encoding it into algorithms. Our
hope is that this sheds a better, more explicit light on the problem.

1.2 Structure of the paper
The paper is structured as follows: We introduce the experimentation
platform and basic concepts in Section 2. In Section 3, we formulate
the problem. In Section 4, investigate potentials and limitations of
existing approaches for the problem. In Sections 5 and 6, we present
our two main investigations. In Section 7, we discuss future direc-
tions and pose open questions. We conclude with Section 8.

2 Preliminaries
Here we introduce the concepts, models and the experimentation
platform we will use in the paper.

Autonomous agents. By an (autonomous) agent we mean a mech-
anism which, at each time point t, takes some input from the environ-
ment, in particular its sensory data which we refer to as observation,
and outputs some action that influences the environment. Moreover,
by an intelligent (autonomous) agent we mean an autonomous agent
which is successful in using its inputs and outputs for given tasks,
i.e., specific goals w.r.t. the environment, often encoded by a reward
or utility function.

Note that in this paper we do not define a clear boundary between
agent and environment. Usually, we consider the hardware platform
of an agent (e.g., the car) as part of the agent. This particularly has
to be kept in mind when we talk of several agents in the “same en-
vironment”: the hardware of the agents may still differ. (It is almost
a philosophical problem to define what precisely the “same environ-
ment” means. Here we simply suggest to interpret this notion as if it
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were used in an everyday conversation. We pose a related question
in Section 7.)

When we consider some agent A w.r.t. which some task is given
and for which we want to infer good actions, while information may
come from (sensory data of) a collection C of other agents, then we
refer to A as target agent and the agents in C as source agents.

Experimentation platform “Malmo”. For the experiments in
Section 5 we will use the software Malmo, a simulated environment
for experimentation with intelligent agents, that was introduced re-
cently [4]. Malmo is based on “Minecraft”, which is an open-ended
computer game where players can explore, construct, collaborate,
and invent their own “games within the game” or tasks. The Malmo
platform provides an abstraction layer on top of the game through
which one or more agents observe the current state of the world (ob-
servations are customizable) and interact with it through their spe-
cific action sets (or actuators). The advantage of Malmo is that it
reflects important characteristics of the problem instances we will
introduce in Section 3. To illustrate the platform, three sample obser-
vations of an agent in three different maps in Malmo will be depicted
in Figure 1.

Causal models. Mathematically, a causal model [10, 14] M over
a set V of variables consists of a directed acyclic graph (DAG) G
with V as node set, called causal diagram or causal DAG, and a
conditional probability density pX|PAX=paX

(for all paX in the do-
main of PAX ) for each X ∈ V , where PAX are the parents of X
in G. Given a causal model M and a tuple of variables Z of M ,
the post-interventional causal model MdoZ=z is defined as follows:
drop the variables in Z and all incoming arrows from the causal dia-
gram, and fix the value of variables in Z to the corresponding entry
of z in all remaining conditional densities. Based on this, we define
the post-interventional density of Y after setting Z to z, denoted by
pY |doZ=z or pY |do z , by the the density of Y in MdoZ=z .

On a non-mathematical level, we consider M to be a correct causal
model of some part of reality, if it correctly predicts the outcomes of
interventions in that part of reality (clearly there are other reasonable
definitions of causation). Keep in mind that in this paper, in particular
Section 6, will use causal models and causal reasoning in a more
intuitive and sometimes less rigorous way, to not be limited by the
expressive power of the current formal modeling language.

Note that we will use expressions like p(x|y) as shorthand for
pX|Y (x|y).

3 Problem formulation

Let us describe the problem we consider in this paper in more detail:

• Given: a task T w.r.t. some partially unknown environment E, and
additional heterogeneous but well-structured information sources
H (e.g., in the form of low-level sensory data, or in the form of
high-level descriptions).

• Goal: design an agent A that automatically harnesses as much rel-
evant information of H as possible to solve T ; more specifically, it
should use H to either improve an explicit model of the effects4 of
its actions, which then guides its actions, or let its actions directly
be guided by H .

4 In this sense, at least the target of the information integration is clear: mod-
eling the dynamics or causal structure of the agent in the environment.

Note that alternatively, one could also formulate the problem by let-
ting A only be an actuator, and not a complete agent, and include
the agent’s sensors into H . This might be a more precise formula-
tion, however, for the sake of an intuitive terminology, we stick to
the definition based on A being an agent.5

To illustrate the general problem, in what follows, we give three
concrete examples of desirable scenarios in which agents automati-
cally integrate heterogeneous information. Ideally, agents would be
able to simultaneously integrate information sources from all three
examples.

3.1 Example 1: sharing information between
different self-driving cars

Consider self-driving cars. It is desirable that as much information
about the environment can be shared amongst them. By such infor-
mation we mean up-to-date detailed street maps, traffic information,
information on how to avoid accidents etc. For instance, assume that
one self-driving car leaves the road at some difficult spot due to some
inappropriate action, since, for instance, the spot has not been visited
by self-driving cars before (or newly appeared due to say some oil
spill or rockfall). If we only consider other self-driving cars of the
same hardware, this experience could directly be transferred to them
by enforcing them not to perform the very action at the very spot.
(I.e., for all cars of the same hardware one could treat the experi-
ence as if it was their own and make them “learn” from it in the
usual reinforcement learning (RL) way.) However, if we assume that
there are self-driving cars of different types, then it is not possible
to transfer the experience, and thus avoid further accidents, in this
straight-forward way.

3.2 Example 2: observing another agent
Consider domestic robots. A domestic robot may, with its sensor,
observe humans how they handle doors, windows, light switches, or
kitchen devices. It should be possible that domestic robots learn from
such experience. For instance, one could imagine a robot to reason
that, if it is able to operate the door knob in a similar way as a human
did before, this would also open the door and and thus allow the robot
to walk into the other room (to achieve some task).

3.3 Example 3: integrating high-level information
Consider an agent that arrives in a city it has never been to before.
The goal is to get to a certain destination, say to the town hall. A
resident may be able to explain the way in a simple language, with
words such as “... follow this street until you come to a church, then
turn right ...”. Or a resident could provide a map and mark directions
on the map. One could imagine that an autonomous agent could com-
bine such a description with a model of the “local” (or “low-level”)
dynamics that is shared by most environments (which is closely re-
lated to the laws of physics). The model of the “local” dynamics
could have been either hard-coded, or inferred based on exploration
in other (related) environments. In principle it should be possible that

5 Note that the problem we formulate here does not coincide with developing
(“strong”) artificial intelligence (AI), as defined, e.g., by the Turing test or
simply based on human-level intelligence. We restrict to sources of infor-
mation that are more or less well-structured - either quantitative measure-
ments with a simple and clear relation to the physical world, or information
in a language much more restrictive than natural language. Nonetheless, the
formulated problem can be seen as one step from say RL into the direction
of AI.
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such a combination allows the agent to successfully navigate to the
destination city hall.

4 Related work: potentials and limitations

Various research directions exist that address major or minor aspects
of the problem formulated in Section 3. Here we discuss the most
relevant such directions we are aware of, highlighting their poten-
tials and limitations w.r.t. the problem. Keep in mind that Sections
5.4 and 6.4 contain additional discussions on the advantages of our
approaches over these directions.

4.1 Reinforcement learning

One of the most powerful approaches to shaping intelligent au-
tonomous agents is reinforcement learning (RL) [16]. Instead of ex-
plicitly hard-coding each detail of an agent, for each environment
and objective individually, the idea is to take an approach which is
more modular and based on learning instead of hard-coding: the su-
pervisor only determines the reward function and then the agent ide-
ally uses exploration of the unknown environment and exploitation
of the gained experience (sensory data) to achieve a high cumulative
reward.

Regarding the problem we consider in this paper, RL plays a key
role for integration of information in the form of recordings of an
agent’s own past, or of an agent with the same hardware. However,
as mentioned in Section 3, in contrast to RL, here we consider the
problem of integrating information beyond such recordings, such as
sensory data from agents with different hardware, or higher level in-
formation such as maps.

4.2 Learning from demonstrations

According to [1], in learning from demonstrations (LfD), some
“teacher” performs a trajectory which is recorded, and the goal is
that a “learner” agent, based on this recording, infers and imitates (or
utilizes) the teacher’s “policy” (or the dynamics of the environment,
or both). Central notions that [1] uses to analyze and distinguish vari-
ous types of LfD problems are the record mapping, i.e., what aspects
of the teacher’s demonstration are measured and recorded, and the
embodiment mapping, i.e., if the recorded actions can directly be im-
plemented by the “learner” and lead to similar observations as the
recoded ones, or if the recordings first have to be transformed “to
make sense” for the learner.

Our problem formulation can be seen as a generalization of LfD.
Based on this, while a significant part of the problem we consider can
be addressed by LfD methods, others are beyond the scope of these
methods: Instead of hand-crafting, e.g., the embodiment mapping for
each agent individually, we aim at (semi-)automating the inference of
the mapping from recordings of “source” agents to actions of a “tar-
get” agent. In particular, we propose to do such a (semi-)automation
based on additional information sources on the hardware specifica-
tions of the agents involved (Section 6).6

6 Note that there is some work on learning from observations only (not ac-
tions) of a “teacher” [12]. However, this approach does not allow to inte-
grate information such as the map in Example 3. Note that a difference to
our method in Section 5 is that, e.g., an estimate of the complete transi-
tion probability is necessary, while our method only requires an idea of the
“low-level” dynamics.

Generally, we aim at integrating information from many different
sources simultaneously (e.g., many other self-driving cars in Exam-
ple 1 and many different forms of information as described in Ex-
ample 1 through Example 3. In particular, we aim at learning from
databases that contain desirable as well as undesirable trajectories
(e.g., avoid similar accidents as in Example 1).

Clearly, we do not present methodology that fully tackles the
above shortcomings of LfD methods in this paper. Rather, we make
first steps towards such methodology in Sections 5 and 6.

4.3 Multi-agent systems
In multi-agent systems, collections of agents acting in a shared en-
vironment are studied [15]. One important task is collaboration be-
tween agents [9]. A common approach is to model the collection
of agents again as a single agent, by considering tuples of actions
and observations as single actions and observations. Learning-based
methods have been extensively studied [5].

While multi-agent systems approaches often allow to share and
transfer information between agents, regarding the problem we for-
mulated in Section 3 they have certain limitations: Similar as LfD,
they usually do not integrate higher-level information sources (as the
map in Example 3) or explicit hardware specifications of the agents
(which we do in Section 6). Furthermore, if the mapping from some
source agents sensory data to a target agents action is learned via
modeling all agents as a single one, then it seems difficult to add
agents to an environment, while our preliminary investigation in Sec-
tion 6 in principle allows for adding agents more easily. Also note
that the task of collaboration between agents is rather external to the
problem we consider.

4.4 Transfer learning for agents
The problem we consider is related to transfer learning for agents.
For instance, [17] consider an example where, in the well-known
mountain car example, experience should be transferred although the
motor of the car is changed. This comes close to transferring experi-
ence between self-driving cars as we suggest in Example 1. However,
the scope of methods reviewed in [17] is on transferring observation-
action recordings or things such as policies, value functions etc. using
an appropriate mapping, while the goal we pursue is to also integrate
information which is usually not expressible in these terms (e.g., the
map or natural language description in Example 3, or the observation
of another agent in Example 2). Furthermore, in this paper we aim
at integrating many heterogeneous sources of information, while in
transfer learning, even though several sources of information may be
considered, they are usually homogeneous.

4.5 Further related areas
Other related directions include the following. Recently, the exper-
imentation with intelligent agents in platforms based on computer
games has become popular [8]. To our knowledge, the current work
is the first one to use such platforms to study the problem of infor-
mation integration, or related problems such as LfD (Section 4.2).

The general integration and transfer of data (not focused on intel-
ligent agents) using causal models has been studied by [11, 3]. The
idea of integrating higher-level information (again not for intelligent
agents though) has been studied, e.g., by [18]. The relation between
intelligent agents and causal models has been studied from a more
philosophical perspective, e.g., by [19].
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Another related areas is computerized knowledge representation
[13]. Compared to general approaches to knowledge representation,
our focus is on knowledge about the physical world.

Another relevant area is integration of human knowledge [7].

5 Investigation 1: integration of “non-subjective”
information, evaluated in a simulated
environment

In this section we aim to shed light on the following aspects of the
problem formulated in Section 3:

• Generally, what experiments, in particular in simulated environ-
ments, can be performed to better understand the problem?

• How can experimentation (exploration) help an agent to translate
“non-subjective” experience not recorded by itself into its own
“coordinate system” and use it for (successful) decision making?

• How can partial information on the dynamics, such as a controller
that is known to work locally, be merged with “higher-level” in-
formation such as hints on the path to some goal position?

• How can we quantify the efficiency gain from additional informa-
tion sources?

The investigation is structured as follows: in Section 5.1 we de-
scribe the scenario, in particular the available heterogeneous infor-
mation sources, in Section 5.2 we sketch an information-integrating
agent for that scenario, then, in Section 5.3, we evaluate an adapted
version of the agent in a simulated environment, and last, in Section
5.4 we discuss the advantages of our method over those that do not
use additional information, and some further aspects.

5.1 Scenario
Task. An agent A starts in some unknown landscape and the task

is to get to some visually recognizable goal position as quickly as
possible.

Available heterogeneous information. We assume the following
information sources to be available:

• the agent’s own sensory input in the form of images yt and po-
sition signal qt (which can be seen an “interactive information”
source since the agent can “query” this source via its actions),

• the controller ctl , which can be seen as a summary of the agent A’s
past subjective experience regarding the invariant local “physical
laws” of a class of environments7,

• a video trajectory y∗0:L that is a first-person recording of another
agent with similar (but not necessarily identical) hardware that
runs to the goal in the same environment.

Relation to the problem formulated in Section 3. On the one
hand, this scenario can be seen as a (very) simplistic version of
the scenario described in Example 1: A is a self-driving car that is
supposed to get to some marked goal in an unknown environment,
and the video y∗0:L comes from other cars that have a similar video-
recording device but different hardware (engine etc.).

On the other hand, this scenario can be seen as a simplistic version
of the scenario described in Example 3: the unknown landscape is

7 Specifically, we assume that if the distance between position q1 and q2 is
small, then ctl successfully steers from q1 to q2. Alternatively, ctl could
be a local model of the dynamics which induces such a controller.

Algorithm 1 Agent that integrates first-person video of other agent

1: input: Controller ctl , video y∗1:L.
2: for i = 1, . . . , L do
3: Use local controller ctl , optimization method opt and interac-

tion with the environment to search locally around the current
position for the next qi = arg minq dist(y

∗
i ,E(Y |Q = q)).

4: Use ctl to go to qi.
5: end for

Algorithm 2 Proof-of-concept of Algorithm 1 for Malmo

1: input: Controller ctl , video y∗1:L.
2: set r0 = current position, once the mission starts
3: for i = 1, . . . , L do
4: use ctl , opt and teleportation to locally search around position

ri−1 for the next ri = arg minr E(dist(y∗i , Y )|Q = r)
5: end for
6: restart the mission
7: set i := 0.
8: while i < L do
9: use ctl to steer to ri

10: if current position is close to ri then
11: set i := i + 1
12: end if
13: end while

some unknown city A arrived in, and instead of a description of the
way to the destination in simple natural language, it gets a sequence
of photos that describe the path it has to take.

5.2 Method
First we sketch a general method, i.e., “software” for A, in Algo-

rithm 1, assuming a (stochastic) optimization method opt and an im-
age distance dist as given (for concrete examples, see below). Note
that in Algorithm 1 we denote by E(Y |Q = q) the mean image Y
observed at position Q = q. The basic idea is that the agent uses
local experimentation, based on prior knowledge of the local dynam-
ics, to map the video y∗1:L into information (and eventually actions)
that directly describes its own situation.

Although Algorithm 1 is in principle applicable to the experimen-
tal setup we consider in Section 5.3 below, we will evaluate Algo-
rithm 2 instead, which is a simplified proof-of-concept implemen-
tation of it, making use of “teleportation”, allowing the agent to di-
rectly jump to other positions without needing to navigate there. For
Algorithm 2, as optimization method opt , we use simple grid search.
(Note that instead one could use gradient descent or Bayesian op-
timization techniques.) Furthermore, we define the image distance
dist using Gaussian blur as follows: dist(u, v) := ‖N ∗ (ū − v̄)‖,
where ū is the normalization of u (i.e., subtraction by mean and di-
vision by standard deviation over the single pixels), N is a bivariate
Gaussian with hand-tuned variance and ∗ is the convolution in both
image dimensions.

5.3 Empirical evaluation in a simulated
environment

To evaluate Algorithm 2, we consider three simple “Parkours” mis-
sions in the experimentation platform Malmo, described in Section
2. These missions consist of simple maps that have a special, visually
recognizable, position which is defined as goal. A short description
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(a) Mission 1 (b) Mission 2 (c) Mission 3

Figure 1: First frames of the respective missions, for illustration purposes.

(a) Mission 1 (b) Mission 2 (c) Mission 3

Figure 2: The “ground truth” position trajectory of the demonstrator
q∗0:L (blue dashed line), and the position trajectory of Algorithm 2
q̂0:K , (red solid line) from top view (x- and y-axis correspond to x-
and y-coordinate in the map. While Algorithm 2 fails in Mission 2
due to the repetitive structure of some wall, it succeeds in Missions
2 and 3 in spite of its simplicity.

Table 1: For each mission (row) a short description (column 2), and
the outcome of Algorithm 2 applied to it (columns three and four).

Mission Description and image U q̂0:K versus q∗0:L

1 Figure 1a. Two passages
have to be passed.

success Figure 2a

2 Figure 1b. With (mortal)
lava next to the path.

fail Figure 2b

3 Figure 1c. With spider webs
that occlude vision and lead
to slow motion.

success Figure 2c

of the three missions is given in column two of Table 1. We gener-
ally restrict the possible actions to [−1, 1]2, where the first dimen-
sion is moving forth and back, and the second is strafing (moving
sideways). The task is to get to the goal position within 15 seconds
in these maps.

For each mission, we record one trajectory performed by a human
demonstrator, which solves the task. More specifically, we record po-
sitions, which we denote by q∗0:L, and observations (video frames),
denoted by y∗0:L.

We run Algorithm 2 with inputs y∗0:L and a simple proportional
controller [2] (for ctl ), where we tuned the proportional constant
manually in previous experiments (but without providing q∗0:L or the
actions the human demonstrator took). Let q̂0:K denote the trajectory
of positions that Algorithm 2 subsequently takes in the map. Further-
more, let U ∈ {fail, success} denote whether the position tracking

while-loop of Algorithm 2 (line 8 and following) gets to the goal
within 15 seconds. (This is a significantly weaker evaluation metric
than considering the runtime of the complete Algorithm 2 of course.)

The outcome of the experiment is given in columns three and four
of Table 1 and Figure 2.

5.4 Discussion
5.4.1 Discussion of the experiment

Outcome. As shown by Table 1 and Figure 2, Algorithm 2 is suc-
cessful for Missions 1 and 3. It fails in Mission 2 due to the repetitive
structure of a wall that fills the complete image that is observed at
some point during y∗1:L. This wall makes the mapping from position
to observation (video frame) (locally) non-injective which makes the
algorithm fail. Note that this problem could quite easily be overcome
by using prior assumptions on the smoothness of q∗0:L together with
considering more than one minimum of dist as the potential true
position (using, e.g., Bayesian optimization) or by searching for po-
sition sequences longer than 1 that match y∗1:L.

Limitation of the experiment. A clear limitation of the exper-
iment is that the human demonstrator that produced y∗1:L used the
same (simulated) “hardware” as Algorithm 2, while the overall goal
of this paper is to integrate heterogeneous information. However, we
hope that this experiment can form the basis for more sophisticated
ones in the future.

5.4.2 Theoretical analysis and insight

Efficiency gain from harnessing y∗1:L. Assuming there are at
most N positions which the demonstrator can reach within one time
step, Algorithm 1 takes only about O(L ·N) steps to get to the goal.
Note that this theoretical analysis is supported by the empirical evalu-
ation: Algorithm 2’s trajectories - visualized in Figure 2 - are roughly
as long as y∗1:L (note that the visualization does not show the local
search of length N ).

This has to be contrasted with an agent that does not integrate the
information y∗1:L, and therefore, in the worst case, has to search all
positions in the map, a number which is usually is much higher than
O(L ·N) (roughly O(L2)).

Comparison to LfD. The task we study is closely related to LfD.
However, note that usually in LfD, the target agent (“learner”) has
access to the demonstrator’s actions, which is not necessary for our
method. Furthermore, in our method, in some sense, the target agent
can be seen as translating y∗1:L into its own “coordinate system” it-
self, while this mapping is usually hand-crafted in LfD.
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Some insights during the development of the method. An in-
teresting insight during the development of Algorithm 5.2 was that
while the low-pass filter only led to minor improvements, what really
helped was to visit each position say three times and then optimize
the distance over the averaged images. Furthermore, it was was sur-
prising how well the simple Euclidean distance we used worked.

Limitations. Note that the method is limited to environments simi-
lar to landscapes where some stochasticity and variation may be con-
tained, but not too much. For instance, if the environment varies to
strongly in the dependence on the time an agent spends in the envi-
ronment, the proposed method most likely fails since the tracking of
y∗1:L usually takes longer than the original performance of it.

6 Investigation 2: integrating sensory data,
hardware specifications and causal relations

In this section we aim to shed light on the following aspects of the
problem formulated in Section 3:

• How can information on the the hardware specifications of various
agents be used for knowledge transfer between them?

• To what extent can causal models help, e.g., for integrating those
hardware specifications (i.e., information on the “data producing
mechanisms”)?8

• How can information from the “subjective perspective” of an
agent (i.e., on the relation between its sensory measurements and
its actions) be merged with information from an “outside perspec-
tive” (i.e., that of an engineer which sees the hardware specifica-
tions of an agent).

The investigation is structured as follows: in Section 6.1 we de-
scribe the scenario, in particular the available heterogeneous infor-
mation sources, in Section 6.2 we outline an information-integrating
agent for that scenario, then, in Section 6.3, we give an intuitive toy
example of scenario and method, and last, in Section 6.4 we discuss
advantages and limitations of our approach.

Keep in mind the definition of causal models in Section 2. It needs
to be mentioned that at certain points in this section we will allow
ourselves some extent of imprecision (in particular in the treatment
of the (causal) model M and how it is inferred), since we aim at
going beyond what current rigorous modeling languages allow.

6.1 Scenario
Task. We consider a scenario where a collection C of autonomous
agents, think of self-driving cars, operates in a shared environment.
(For simplicity we assume that the number of agents is small com-
pared to the size of the environment, such that they do not affect
each other.) We assume that while some hardware components of the
agents differ, others are invariant between them. We assume that for
each car a task (e.g., to track some trajectory) is given and fixed.

Available heterogeneous information. Note that we could allow
C to vary over time, e.g., to account for the fact that new cars get on
the road every day, however, for the sake of a simple exposition, we
leave it fixed here. We assume the following information sources to
be available at time t:
8 Another reason why causal reasoning could help is that in the end we are

interested in the causal effects of an agent on its environment, and not just
correlational information.

Algorithm 3 Integration and control algorithm for agent j

1: input: Time point t, description D, specifications (speck)k∈C ,
experiences (ekt )k∈C .

2: Initialize a causal model M by the causal diagram implied by
the description D over the set of factors in (speck)k∈C and
(ekt )k∈C .

3: Update the “belief” over the mechanisms in M using all val-
ues of variables contained in (speck)k∈C and the experiences
(ekt )k∈C (possibly based on additional priors).

4: From the updated M , calculate M j , the implication of M for
agent j.

5: Find action u(t) that is optimal w.r.t. the given task, under M j .
6: output: u(t)

• specifications speck of the hardware of each agent k
• past experiences (i.e., actions and observations) ekt of all agents

k ∈ C, consisting of observations yk(t) and control outputs
uk(t), i.e., ekt = (uk(0), yk(0), . . . , uk(t), yk(t)).

• a description D (e.g., a physical or causal model or collection of
such models) consisting of (1) a set of independence statements9

and (2) a set of dependence statements, possibly including spe-
cific information on the shape of the dependence, w.r.t. the factors
contained in the specifications speck and the experiences ek, for
k ∈ C. Potentially, the various independence and dependence in-
formation pieces could come from different sources, say targeted
experiments as well as general prior knowledge. We assume the
dependence structure (including the precise shapes of the depen-
dences) to be time-invariant.

Relation to general problem. This scenario captures certain as-
pects of Example 3 in that some higher-level information in the form
of the description D is available. While here, as a first step, we only
consider mathematical models, in the future one could also imagine
to include informal but well-structured models and descriptions (in
simple natural language), possibly translating them into formal mod-
els as an intermediate step (using, e.g., machine learning). Further-
more, the scenario captures important aspects of Example 1, since
we consider the integration of information from certain source self-
driving cars for the decision making of a given target car.

6.2 Sketch of a method
We sketch a method for the described scenario in Algorithm 3.

It first derives a “global” causal diagram - applying to all agents -
from the potentially heterogeneous description D (line 2). Then (line
3) the causal conditionals of M , which are not determined by D,
are inferred from the given hardware specifications as well as the
experiences gathered by all agents up to time t. Last, based on the
hardware specifications of agent j, the implications of M for agent j
are calculated (line 4) and the optimal action under these implications
is performed (line 5).

6.3 A toy example
Let us illustrate how the method proposed in Section 6.2 works in a
concrete toy scenario. The core intuition is that while some details

9 Clearly, independence assertions are central to integration of information:
only based on statements of the form “Y is more or less independent of all
factors that potentially will be included, except for this and this small set”
it seems possible to rigorously (automatically) reason about integration.
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of the dynamics of self-driving cars may vary between different cars,
they can still share information on say the road conditions (friction,
drag, etc.) at certain positions y, or the like.

ÿ(t)

F (t) G(t)

u(t) y(t)

hp

Figure 3: Sketch of the causal diagram H . The power hp influencing
only F (t) implies that knowledge on the mechanism fG for G(t) can
be transferred between two cars even if they differ in hp.

Specific scenario. We consider two simplified self-driving cars,
i.e., C = {1, 2}, where we assume the observation yk(t) (or y(t)
if we refer to a model for both cars) to be the car’s position. We
consider the following concrete instances of the information sources
listed in Section 6.1. (Note that, for the sake of simplicity, we assume
all mechanisms to be deterministic, such that we can model them
by functions f... instead of conditional distributions p(. . . |pa...), al-
though the latter would be more general, see Section 2.)

• The specification for car k is given by its power (e.g., measured in
horse powers), i.e., speck = hpk.

• The experience of car k consist of all past position-action pairs of
both cars, i.e., ekt = (uk(0), yk(0), . . . , uk(t), yk(t)).

• The description D consists of three elements:

– an engineer contributes the equation F (t) = fF (u(t), hp) for
the engine of the cars10, where F (t) is the force produced by
the engine (incl. gears), and fF a known function,

– a physicist contributes the equation ÿ(t) = 1
m

(F (t)+G(t)) for
the acceleration ÿ(t) of the cars, where G(t) are other forces
that affect the cars, such as friction and drag, and m is the
known mass (which we assume to be the same for both cars),

– another physicist produces a set of additional independence
assertions, such that altogether the description D implies the
causal diagram H depicted in Figure 3.11

Implementation of our method. We suggest the following con-
crete implementation of the crucial part of our method, i.e., line 3
and 4 in Algorithm 3, based on the concrete instances of information
available in this toy scenario. Keep in mind that fG, the function that
maps a position y to the corresponding force G at that position and
thus models the generating mechanism for G(t), is the only unknown
part of M after initializing it by D.

• Line 3: Use the experience (ekt )k∈C , to infer the function fG on
all positions y visited by either of the cars, based on the equation

mÿ − fF (u, hpk) = fG(y)

10 In particular, the mechanism specification implies non-influence by all
other relevant factors.

11 A better way to describe the physical forces causally might be to replace
ÿ(t) in the equations and in D by expressions based on v(t + ∆t), v(t),
and ∆t, where v(t) denotes the velocity.

for all k ∈ C, and the fact that the l.h.s. of this equation as well as
y are known for all positions (and accelerations) visited by either
of the cars.

• Line 4: calculate “p(ÿ|do(u), y, hpj )”, i.e., the effect of control
action u of agent j at position y, for all positions that were visited
before by either of the cars.

6.4 Discussion
The toy example in Section 6.3 shows how in principle the inte-
gration of heterogeneous information could help some “target” self-
driving car for better decision making in situations not visited by it
but by different “source” self-driving cars. It is important to note that
all listed information sources were necessary for this: the hardware
specifications are necessary to understand F (t), the experience is
necessary to infer fG, and the independence knowledge (hp not af-
fecting G(t)) is necessary to transfer the knowledge about the force
G(t) on various positions y between the cars. Note that the above
scenario cannot be tackled by standard RL approaches since we
transfer knowledge between agents of different hardware. Further-
more, methods like LfD or transfer learning (see Sections 4.2 and
4.4) usually do not automatically harness information on hardware
specifications of agents.

Based on our preliminary investigation above, it seems that causal
models are helpful in that they provide a language in which one can
express relevant assumptions and reason about them. However, from
a practical perspective, it is not clear if the necessary calculations
could not be genuinely done e.g. in classical probabilistic models.

An important question is whether the method sketched in Section
6.2 can be generalized to dependence statements in more natural - but
still well-structured - language than equations and causal diagrams.

7 Outlook: future directions and open questions
Here we sketch a potential agenda for future investigations and pose
interesting open questions.

7.1 Potential future directions
“Universal representation of physical world”. An interesting

subject-matter of future research would be a “universal represen-
tation” of the physical world - a rich representation to which each
information source could be translated, and from which each agent
could derive the implications for its specific sensor and actuator con-
figurations. Such a representation would be more efficient than hand-
crafting mappings for each (new) pair of source and agent individu-
ally (as is usually done in e.g. LfD, see Section 4.2), reducing the
number of necessary mappings from n2 to n, where n is the num-
ber of agents. One starting point would be representations that are
already used to integrate laser or radar scanner data on the one hand
with (stereo) video camera data on the other hand in self-driving cars
[6]. Another starting point would be the global positioning system
(GPS) which is a successful universal representation of position with
clear, hardware-independent semantics.

Investigation and classification of the “integration mapping”.
Another important concept for integration of heterogeneous infor-
mation could be the mapping that transforms a collection of pieces
of well-structured heterogeneous information into a model of the
current situation or even directly into action recommendations. The
study of such a mapping could build on the investigation of related
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mappings in LfD and transfer learning for agents (see Sections 4.2
and 4.4). Furthermore, parts of such a mapping could be learned
(which would be related to machine-learning-based multi-agent sys-
tems, see Section 4.3. Generally, it would be interesting to examine
the basic conditions under which the integration of heterogeneous
information can be beneficial. Note that one way to classify and or-
der various sources of information (and the mappings that are neces-
sary to integrate them) would be from “closest to the agent A”, i.e.,
it’s own past observations and actions to “most distant”, e.g., agent-
independent descriptions of the world in simple natural language, as
exemplified in Section 3.

Further experiments. Further experiments, with a gradually in-
creasing difficulty (e.g. along the ordering proposed in the previous
paragraph), could be performed, e.g. using the platform Malmo (Sec-
tion 2) to gain a better understanding of integration of information:

1. Agents can observe other agents from a third-person perspective,
enabling Example 2 in Section 3.

2. Higher level observations can be provided in the form of natural
language (typed chat or external information in the form of natural
language), or through artifacts such as maps, sign-posts, symbolic
clues, etc.

7.2 Open questions
It would also be interesting to investigate how the following ques-
tions could be answered:

• One of the main question which guided our investigation in Sec-
tion 6 can be cast as follows. While the information relevant to
an agent is usually in the form of effects of its actions in certain
situations, a lot of knowledge is formulated in non-causal form:
for instance street maps at various granularities for self-driving
cars. How are these two forms of information related? Is there a
standard way to translate between them? Stated differently, how
can various forms of information be translated into a model of the
dynamics of the agent in the world.

• Where is the boundary between additional heterogeneous infor-
mation and prior knowledge?

• How can the need for information integration be balanced with
privacy restrictions? For instance, one may imagine cases where
the mapping from a source agent’s experience to a target agent’s
action is rather simple in principle, but information collected by
the source agent cannot or should not be transmitted to the other,
at least not in full.

• How can big databases of information be filtered for useful infor-
mation, i.e., the information which is correct and relevant for the
current environment and task?

• To what extent is the problem of information transfer between two
different agents in the “same” environment just a special case of
transfer between different environments (by considering the hard-
ware of an agent as part of the environment)?

• How can we reason without having a “global” model such as Fig-
ure 3? What about interfaces to build global from “local” models,
describing only say the engine?

• Generally, what are potential theoretical limitations of automated
information integration, e.g. in terms of computability?

8 Conclusions
In this paper, we considered the problem of designing agents that
autonomously integrate available heterogeneous information about

their environment. We investigated how experimentation in simu-
lated environments on the one hand, and causal models on the other,
can help to address it. A next step would be to perform more sophisti-
cated experiments, ideally guided by specific problems e.g. from the
area of self-driving cars.
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Analysis of Swarm Communication Models
Musad Haque1, Christopher Ren1, Electa Baker1, Douglas Kirkpatrick2, and Julie A. Adams1

Abstract. The biological swarm literature presents communication
models that attempt to capture the nature of interactions among the
swarm’s individuals. The reported research derived algorithms based
on the metric, topological, and visual biological swarm communica-
tion models. The evaluated hypothesis is that the choice of a biolog-
ically inspired communication model can affect the swarm’s perfor-
mance for a given task. The communication models were evaluated
in the context of two swarm robotics tasks: search for a goal and
avoid an adversary. The general findings demonstrate that the swarm
agents had the best overall performance when using the visual model
for the search for a goal task and performed the best for the avoid an
adversary task when using the topological model. Further analysis
of the performance metrics by the various experimental parameters
provided insights into specific situations in which the models will be
the most or least beneficial. The importance of the reported research
is that the task performance of a swarm can be amplified through the
deliberate selection of a communications model.

1 INTRODUCTION
Animals that live in groups gain reproductive advantages, benefit
from reduced predation risks, and forage efficiently through group
hunting and the distribution of information amongst group mem-
bers [18]. The collective behavior of these biological systems, for
instance, trail-forming ants, schooling fish, and flocking birds, dis-
play tight coordination that appears to emerge from local interac-
tions, rather than through access to global information or a central
controller [7]. Numerical simulations based solely on local interac-
tion rules can recreate coordinated movements of biological systems
living in groups [2, 10, 15, 17, 24, 29].

Proposed communication models for group behavior in animals
include the metric [9], the topological [1, 3], and the visual models
[28]. The metric model is directly based on spatial proximity: two
individuals interact if they are within a certain distance of one another
[9]. Ballerini et. al.’s [3] topological model requires each individual
to interact with a finite number of nearest group members. The visual
model, which is based on the sensory capabilities of animals, permits
an individual to interact with other agents in its visual field [28]. The
communication model is an important element in collective behavior,
because it reveals how information is transferred in the group [28].

The development of communication networks is described as “one
of the main challenges” in swarm robotics [16]. Bio-inspired arti-
ficial swarms inherit desirable properties from their counterparts in
nature, such as decentralized control laws, scalability, and robustness
[6]. Robustness in the context of this paper implies that the failure of
one agent does not lead to the failure of the entire swarm. Despite
the beneficial properties, a poorly designed communication network

1 Vanderbilt University, USA, email: musad.a.haque@vanderbilt.edu
2 Michigan State University, USA

to an artificial swarm can lead to undesirable consequences, such as
the swarm fragmenting into multiple components [16].

The evaluated hypothesis is that the three communication mod-
els – metric, topological, or visual – when used by a tasked artificial
swarm will affect the swarm’s performance. The evaluation analyzes
how the communication models impact swarm performance for two
swarm robotics tasks: searching for a goal and avoiding an adver-
sary. The findings demonstrate that there is a significant impact of the
communication model on task performance, which implies that the
task performance of a deployed artificial swarm is amplified through
performance-based selection of communication models.

Section 2 provides related work. Section 3 describes the coordina-
tion algorithms derived from the biological models. Experiments are
presented in Sections 4 and 5, and an overall discussion with con-
cluding remarks is provided in Section 6.

2 RELATED WORK
Comparative evaluations of the different swarm communication
models can be grouped into three fields: biology [3, 28], physics
[4, 26], and computer science [14].

Prior research compared the communication models to identify
which model best explains the propagation of information within
biological species. Stranburg-Peshkin et al. [28] reported that for
golden shiners, Notemigonus crysoleucas, the visual model best pre-
dicts information transfer within the school. The Metric and topolog-
ical models were compared for flocks of European starlings, Sturnus
vulgaris [3], and the topological model most accurately described the
starlings’ information network. The experiment compared the cohe-
sion of simulated swarms using the topological and metric models,
and the topological model generated more cohesive swarms [3].

Physics-based approaches compared the metric and topological
models and presented the resulting system properties. Specifically,
Shang and Bouffanais [26] presented results on the probability of
reaching a consensus. Barberis and Albano [4] analyzed the differ-
ence in group orders (alignment and moment) that arise when using
the metric and topological models.

Computer science results include evaluating the metric and topo-
logical models in the context of human-swarm interaction [14]. The
human steered the swarm by manipulating a leader agent that directly
influenced other swarm members. It was determined that a human
can more easily manage a swarm using the topological model.

The presented evaluation appears to be the first to compare the
metric, topological, and visual models for tasks on artificial agents.

3 COORDINATION ALGORITHMS
The agents are modeled as 2D self-propelled particles. A self-
propelled particle is controlled through updates to its velocity head-
ing, which in turn affects the particle’s position [10, 13, 29].
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Figure 1. Agents (triangles) are shown in relation to the focus agent (filled triangle), labeled i. The communication links from agent i to its neighbors are
represented with lines. (a) Metric: Agent k is at a distance greater than dmet (dashed circle) from agent i; (b) Topological: ntop is set to 5; (c) Visual: The

visual range of agent i is shown (dashed sector), where agent j is in agent i’s blindspot and agent k is occluded from agent i by another agent.

The artificial agents are indexed 1 throughN , whereN is the num-
ber of agents in the swarm. If there is a communication link from
agent i ∈ {1, . . . , N} to agent j ∈ {1, . . . , N}, where i 6= j, agent
j is a neighbor of agent i. The neighbor set of agent i, denoted by
Ni(t) is the collection of all the neighbors of agent i at time t.

The coordination of the swarm agents is designed through a multi-
level coordination algorithm. At the higher level of abstraction,
an agent’s neighbors are determined by the communication model.
Thus, for agent i, the communication model constructs the setNi(t)
at each time t. At the lower abstraction level, agents only interact
with their neighbors and the nature of this interaction is governed by
three rules: repulsion, orientation, and attraction. The rules are based
on Reynolds’s rules for boids (see [24]), which are similar to the bi-
ological swarm literature (e.g., [2]).

Each agent’s zones of repulsion, orientation, and attraction are
centered at the agent’s position and are parameterized through the
radii rrep, rori, and ratt, respectively, where rrep < rori < ratt.
The zones are represented as circles in the 2D case.

The heading of each agent i ∈ {1, . . . , N} is updated as follows:
1) Veer away from all agents inNi(t) within a distance rrep, 2) Align
velocity with all agents in Ni(t) that are between a distance of rrep
and rori, and 3) Remain close to all agents j ∈ Ni(t) that are be-
tween a distance of rori and ratt [19, 24].

3.1 Communication models
The metric model uses a single parameter dmet that represents a dis-
tance measure. All agents within a distance dmet from agent i are
i’s neighbors, as shown in Figure 1(a). Due to the symmetric nature
of the model, if j ∈ Ni(t), then i ∈ Nj(t). A stochastic version of
this model was developed to analyze starling data [5]. The analyzed
models assign neighbors in a deterministic manner.

The topological model is characterized by ntop, measured in units
of agents. Ni(t) is the set containing the ntop nearest agents from
agent i ∈ {1, . . . , N}. Zebrafish, Danio rerio, have 3−5 topological
neighbors [1], and starlings coordinate, on average, with the nearest
6 − 7 birds [3]. Figure 1(b) depicts the neighbors of agent i, with
ntop set to 5.

A sensing range, a blindspot, and occlusion are used to describe
the visual model [28]. Agent j is a neighbor of agent i, if three con-
ditions are met: 1) The distance between the two agents is less than

dvis, 2) Agent j is not in agent i’s blindspot, and 3) The line-of-sight
between the agents is not occluded by another agent or object in the
environment. A blindspot emerges because the agent’s sensing range
is characterized by an angle ±φ from its heading [10, 13]. Figure
1(c) depicts agent i’s sensing range, with φ set to 2π/3 radians.

The particular choices made for the values of dmet, ntop, dvis, and
φ can be characterized as inheriting from the “descriptive agenda” of
multi-agent learning [20, 27]. The goal in the descriptive agenda is
to model the underlying phenomenon from the social sciences (bio-
logical swarm communication models). The biological swarm litera-
ture provides parameter values that are used to compare the different
communication models on tasked artificial swarms. dmet was set to
ratt for metric model experiments (e.g., [2, 9]). The visual model
experiments set an agent’s dvis to half the size of the diagonal of the
world with φ = 2π/3 radians [10, 28]. ntop ∈ {5, 6, 7, 8} for the
topological experiments, allowing some variability, while remaining
close to what was observed in nature [3].

The novelty is the comparative evaluations of the different com-
munication models that are solely based on the biological swarm
literature; hence, strictly inheriting from a descriptive agenda. Tradi-
tional artificial swarm communication models do not typically mimic
the three communication models (e.g., [8]). Although, perception-
based models that rely on line-of-sight communication, such as a
swarm of foot-bots responding to light sensors, is a variant of the vi-
sual model [12]. As such, one potential application is to serve as a
guide for hardware selection.

4 THE SEARCH FOR A GOAL EXPERIMENT

4.1 Experimental design

All experiments were conducted using the Processing open-
source programming language on a 8GB, 2.6GHz Intel Core i5 Mac-
book Pro. The body length, BL, of each agent was set to 2 pixels.
The size of the world was 600× 600 pixels.

The communication model is the primary independent variable:
metric, topological, and visual. Additional independent variables
were: the number of agents, the number of obstacles, the radius of
repulsion, the radius of orientation, and the radius of attraction. The
experiment combined each of the primary independent variables with
each of the additional independent variables. The resulting pair-wise
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Figure 2. The eight possible interaction zone configurations. The
inner-most, middle, and outer-most circles represent the zones of repulsion,

orientation, and attraction, respectively.

combinations offers a more comprehensive analysis of the effect of
the communication models.

The number of agents, N , was 50, 100, and 200. The tuple (rrep,
rori, ratt) describes an agent’s repulsion, orientation, and attraction
zones. The radius of repulsion, rrep, was set to either 5 × BL or
10 × BL. The radius of orientation, rori, was assigned to either
1.50 × rrep or 2.00 × rrep, and the radius of attraction, ratt, was
given a value of either 1.50 × rori or 2.00 × rori. Designing the
interaction zones in this manner results in 23 possible tuples with
varying (relative) zone sizes, as illustrated in Figure 2.

The search for a goal task included environmental obstacles. The
number of obstacles, Nobs, was 0%, 10%, or 20% of N .

The objective of the artificial swarm during the search for a goal
is to locate a single goal location3, the star in Figure 3. The goal
area’s size is scaled to ensure the swarm is able to fit within the goal
area. The world is bounded by a wall that exerts a repulsive force. An
agent can sense the goal if it is within ratt of the goal area’s location.
Once an agent locates the goal, it can communicate the location to its
neighbors. Agents aware of the goal’s location update their headings
by equally weighing the desire to travel to the goal and the desire to
follow the interaction rules, which was employed by Couzin et al. [9]
and Goodrich et al. [14]. The simulation runs for 1, 000 iterations.

The percent reached, denoted by R, determines the number of
agents that reached the goal area, expressed as a percentage of the
swarm’s size, N , at the end of the task.

The latency, L, measures the rate of information transfer in the
swarm during the task. Specifically, latency represents the number of
iterations required for the swarm to transition from a state where at
least one agent knows the goal’s location to all agents being aware
of the goal’s location. Degenerate cases are processed by setting the
latency to the maximum possible duration, 1, 000 iterations, Based
on this definition, the simulator did not influence this metric.

The clustering coefficient is the fraction of pairs of a swarm
agent’s neighbors that are neighbors with each other [11]. The co-
efficient ranges from 0, where none of the swarm agent’s neighbors
are neighbors with each other, to 1, where all pairs of a swarm agent’s
neighbors are neighbors with each other. The swarm clustering co-
efficient, denoted by SCC, averages the clustering coefficients of all
swarm agents. A high swarm clustering coefficient implies a dense
communication network and redundant information passing between
the agents. While calculating the swarm clustering coefficient, the
asymmetric nature of the communication links that resulted from the
topological and visual models were ignored. Strandburg-Peshkin et
al. [28] performed the same treatment on directed links when com-
paring this metric across different communication models for fish

3 Videos of example trials can be found at
http://eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/
human-swarm-interaction/emulating-swarm-communications/

data. This metric permits comparison to prior findings.
The three hypotheses for this task are:

1. Hsg1: RV > RT > RM ,
2. Hsg2: LV < LT < LM , and,
3. Hsg3: SCCV < SCCT < SCCM .

The subscripts associated with the performance metrics indicate the
metric (M ), the topological (T ) and the visual (V ) models.

Figure 3. An artificial swarm performing the search for a goal task using
the topological model. The center of the goal area is represented by a star,
circles represent obstacles, agents are filled triangles, and the lines denote

communication links. The trial parameters were: N = 50, Nobs = 0.20N ,
rrep = 20, rori = 40, ratt = 60, and ntop = 6.

Hypothesis Hsg1 assumes that a greater percentage of agents will
reach a goal using the visual model and that the metric model will
have the lowest percentage reached. The hypothesis is based on the
potentially long-range sensing capabilities associated with the vi-
sual model. Agents favorably oriented and not occluded by obsta-
cles or other agents have a higher chance of communicating with an
agent that has located the goal. Moreover, fewer stragglers may arise
with the visual and topological models, thus increasing the percent
reached. Hsg1 further assumes that the limit on ntop, compared to
the range of dvis, allows a greater percentage of agents to arrive at a
goal using the visual model, compared to the topological model.

Establishing long-range communication between two agents in the
visual model depends on the orientation of the agents and occluding
factors. The range dvis may not be a limiting factor in identifying
neighbors when positioned in the interior of the swarm. However,
any occurrence, regardless of how infrequent, of a long-range link
in the network can act as a short-cut for transferring information. As
such,Hsg2 states that information diffuses faster in swarms using the
visual and topological models, than with the metric model.

Hypothesis Hsg3 states that the swarm clustering coefficient will
be the highest in the metric model and the lowest in the visual model.
Communication links in the metric and topological models are not
affected by occlusions, a factor that is expected to yield sparser net-
works for the visual model.

A trial is defined as a single simulation run for a given selection
of parameters, (N,Nobs, rrep, rori, ratt). Twenty-five trials for each
parameter selection were completed. The total number of trials for
the search for a goal task was 10, 800: 1, 800 trials for each of the
metric and visual models, and 7, 200 trials for the topological model
(1, 800 trials for each of the four values of ntop).
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4.2 Results

The Anderson-Darling test for normality indicated that all per-
formance metrics: percent reached (A=431.01, p<0.001), la-
tency (A=621.88, p<0.001), and swarm clustering coefficient
(A=162.72, p<0.001) were distributed normally. An analysis of
variance (ANOVA) by ntop did not find a significant difference for
the topological model’s performance. Without loss of generality, the
topological trials with ntop = 7 are used in the reported ANOVAs.

The topological and visual models had virtually identical mean
percent reached, as reported in Table 1. The ANOVA found
that model type had a significant impact on the percent reached
(F (2,5398)=83.91, p<0.001). A Fisher’s LSD test investigated the
pair-wise differences. There was no significant difference between
the visual and topological models, and the metric model had a sig-
nificantly lower percent reached compared to the other models.

Table 1. The search for a goal task descriptive statistics by models. The
best means are in bold. (The percent reached, latency, and swarm clustering

coefficient are represented by R, L, and SCC, respectively.

Model Statistic R L SCC

Mean 27.68 637.79 0.95
Metric Median 0.00 1000.00 0.95

Std. Dev. 41.60 471.73 0.03
Mean 39.08 864.99 0.62

Topological Median 34.00 1000.00 0.62
Std. Dev. 31.75 290.20 0.06

Mean 41.10 438.73 0.31
Visual Median 22.00 31.00 0.33

Std. Dev. 42.56 487.99 0.07

All data was further analyzed by the number of agents, number
of obstacles, and the radii of repulsion, orientation, and attraction.
ANOVAs showed significant interactions between the communica-
tion models and the number of agents (F (2,5398)=11.26, p<0.001),
the number of obstacles (F (2,5398)=8.85, p<0.001), and the ra-
dius of attraction (F (2,5398)=2.52, p=0.043). No significant inter-
actions were found for the radii of orientation and repulsion.

Fisher’s LSD test showed that for N=50, there was no signifi-
cant difference between the visual and topological models. The mean
percent reached was the highest when N=100 using the topological
model. The visual model had the highest mean percent reached for
N=200. The percent reached for the metric model was significantly
different compared to the other models across all values of N .

The mean percent reached for all the models decreased as addi-
tional obstacles were included, as shown in Figure 4(a).

At ratt=22.50 there was no significant difference in percent
reached for the metric and visual models, see Figure 4(b). The
metric model’s mean percent reached was significantly higher at
ratt=22.50 compared to ratt=80.

The means are susceptible to the influence of outliers, thus the me-
dian values are also reported as a central tendency measure to better
assess the performance of the communication models. Further, the
interquartile ranges provide additional insights beyond the means.

The median for the metric model’s percent reached was 0 for the
overall results (see Table 1), which was much lower than the mean.
The metric model’s median was 0 for most of the parameters and
their associated values. The exception being the largest value of N ,
the obstacle-free trials, the smallest values for the radii of repulsion
and orientation, and the two smallest values for the radius of attrac-
tion. The median was typically below 10 for those cases, and less

than 40 for the obstacle-free trials.
The visual model’s third quartiles were at least 95 and mostly 100,

except for when N=100, Nobs=0.2, and for the smallest values of
the radii of orientation and attraction. The high third quartiles in-
dicates that the fourth quartile, or the top 25% of the visual model
trials, and at least one of the third quartile trials, had all agents reach-
ing the goal area. The metric model’s interquartile ranges had much
larger variability than the topological model. Across the various pa-
rameters, there was at least one parameter value for which the metric
model’s third quartile was 100%.

Overall, the visual model’s mean latency was the lowest, whereas
the topological model had the highest mean latency, as presented in
Table 1. ANOVA showed that a significant difference existed by com-
munication model (F (2,5398)=449.26, p<0.001). Moreover, pair-
wise testing with Fisher’s LSD test found that latency for all three
models were significantly different from each other.

ANOVA found significant interactions by model and the
number of agents (F (2,5398)=45.70, p<0.001), number of
obstacles (F (2,5398)=40.60, p<0.001), radii of repulsion
(F (2,5398)=66.96, p<0.001), orientation (F (2,5398)=28.59,
p<0.001), and attraction (F (2,5398)=11.15, p<0.001).

Fisher’s LSD test showed that the visual model latency at
ratt=22.50 was significantly lower than the metric and topologi-
cal models. At ratt=80, the analysis found a significant difference
across each of the models, with the metric model’s mean latency be-
ing lowest (see Figure 4(c)). An identical trend occurs for the lowest
and highest radius of orientation.

The metric model’s median latency was 1000, for most cases
across the number of agents, number of obstacles, and the radii of
repulsion, orientation, and attraction. The exceptions occurred for
the largest value of the radius of repulsion, the two largest values
of the radius of orientation, and the two largest values of the radius
of attraction, as shown in Figure 4(c). The median latency was typi-
cally 0 for those exceptional cases. Similarly, the topological model’s
median latency was 1000 across the variables. Additionally, the first
quartile of the topological model’s latency was 1000 in most cases,
and in certain cases, it was at least greater than 400 (see Figure 4(c)).
The visual models’ median latency was lower than the mean, and
was 0 for the largest value of the number of agents, the largest value
of the radius of repulsion, and the two largest values of the radii of
orientation and attraction (see Figure 4(c)).

The mean swarm clustering coefficient was lowest in the visual
model and highest in the metric model. An ANOVA showed a sig-
nificant difference by model (F (2,5398)=1810, p<0.001). Fisher’s
LSD test found that all the models had significantly different means.

Results from ANOVA showed that for the swarm clustering
coefficient, there were significant interactions by model and the
number of agents (F (2,5398)=631.50, p<0.001), the number of
obstacles (F (2,5398)=2132.00, p<0.001), the radii of repulsion
(F (2,5398)=320.90, p<0.001), orientation (F (2,5398)=144.40,
p=0.03), and attraction (F (2,5398)=166.40, p<0.001). The results
of Fisher’s LSD test found a significant pair-wise difference between
the models across all variables and associated values.

The median swarm clustering coefficients for all communication
models were generally close to the means across all parameters and
associated values. The interquartile ranges were typically tight, with
only a few cases where the maximum value of one model overlapped
with the minimum value of another. Those cases were the smallest
number of agents (see Figure 4(d)), the smallest radii of repulsion,
orientation, and attraction.
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(a) Percent reached. (b) Percent reached.

(c) Latency (d) Swarm clustering coefficient.

Figure 4. The search for a goal task performance metrics. Each box plot denotes the first and third quartile of data. The horizontal lines indicate the medians,
the crosses represent the means, and the circles show the outlying data. The legend for the plots (b)-(d) can be found in (a), where M , T7, and V denote the

metric, topological (with ntop = 7), and visual models, respectively.

4.3 Discussion

Hsg1 was partially supported. The topological and visual models out-
performed the metric model in reaching the goal area, yet there was
no clear difference between the visual and topological models.

The visual model latency was substantially lower than the topolog-
ical and metric models; however, the metric model outperformed the
topological model in terms of the transfer of information. As such,
Hsg2 was also only partially supported. The metric model’s bidirec-
tional communication links possibly allowed information to spread
faster through the network, compared to the topological model.

Similar to Strandburg-Peshkin et al.’s [28] results for fish, the
swarm clustering coefficient was lowest with the visual model. The
clustering coefficient for fish with the topological model was higher
than the metric model, contrary to the findings presented in Table 1.
One possible reason for this difference can be attributed to the dif-
ference in using collective motion experimental data as opposed to
modeling through self-propelled particles.

Based on the general findings, the visual communication model

is the best for artificial swarms completing a search for a goal task
when fewer redundant connections are desired, because it resulted in
virtually the best percent reached, the lowest latency, and the lowest
swarm clustering coefficient. A low swarm clustering coefficient can
be disadvantageous in noisy environments, which can benefit from
redundant communication links. The metric and topological models
are preferred for such environments, because of their high swarm
clustering coefficients. Furthermore, given a noisy environment and
a requirement for only a few agents to reach the goal, then the metric
model is preferred. Given the same noisy environment, but a high
percentage of agents needed to reach the goal, then the topological
model can be used. The tradeoff is the model’s high latency.

The analysis by the radius of attraction, which was the value of
dmet, revealed that the metric and visual models are fundamentally
different from one another and the difference does not stem from
the visual model’s larger communication range. Overall, the visual-
based swarms performed better than the metric-based swarms. How-
ever, at the lowest value of the radius of attraction (dmet=22.50),
the metric and visual models had comparable mean percent reached.
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(a) Initial configuration (b) Metric at t = 181 (c) Topological at t = 187 (d) Visual at t = 183

Figure 5. An artificial swarm performing the avoid an adversary task under all three communication models. The adversary is denoted by a triangle and
swarm’s agents are represented by filled triangles. The lines between agents denote communication links. The trial parameters were: (b)-(d) N = 50,

rrep = 10, rori = 15, ratt = 30; (b) dmet = 30; (c) ntop = 6; (d) dvis = 425.

Furthermore, for the highest value of the radius of attraction, or
dmet=80, the latency of the metric model was shown to be signifi-
cantly lower than the visual, which used a range of dvis=425.

5 THE AVOID AN ADVERSARY EXPERIMENT
5.1 Experimental design
This experiment was performed using the same machine and the ex-
perimental parameters, other thanNobs, were identical. No obstacles
were included in this experiment.

The swarm is required to avoid a predator-like agent4 during the
avoid an adversary task, which is modeled through a repulsive force
exerted by the adversary on the swarm agents [3]. The swarm (dark
mass in Figure 5(a)) is initially aligned facing the predator (triangle
in Figure 5(a)). The predator is the same size as the swarm agents and
can occlude the visual communication between agents. For illustra-
tive purposes, the rendering of the predator has been increased. The
predator (moving in a predefined path) and swarm travel toward each
other and when the swarm agents are within ratt of the adversary, the
predator’s repulsive forces affect the swarm agents’ heading. Agent
positions are initially distributed in an area that is proportional to
the swarm’s size, N . The predator’s starting position is horizontally
offset, such that the predator and swarm travel the same distance to
meet, regardless of the swarm’s size. The effects of the adversary on
the swarm are isolated by removing the environmental obstacles and
negating the wall’s repulsive forces. Each trial runs for 200 iterations.

Dispersion, denoted by D, is measured as the percentage increase
of the average agent to agent distance from the start to the end of
the trial. The average agent to agent distance has significance in the
biological literature and is one of eleven parameters considered when
characterizing the emergent properties of fish [23].

A connected component is defined as the largest collection of
agents in which any two agents are either connected directly by a
communication link or indirectly via neighbors [11]. The number of
connected components, CCO, is calculated at the end of a trial, and
is 1 at the start of a trial.

The percent isolated components, represented by I , is the percent-
age of swarm agents that have no neighbors.

4 Videos of example trials can be found at
http://eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/
human-swarm-interaction/emulating-swarm-communications/

The three hypotheses for this task are:

1. Haa1: DV < DT < DM .
2. Haa2: CCOV < CCOT < CCOM .
3. Haa3: IT < IV < IM .

The subscripts indicate the communication models.
Hypothesis Haa1 assumes that the metric model will generate

swarms with the highest dispersion due to fragmentation. Addition-
ally, the topological and visual models are expected to attract out-
lying agents back into the main swarm after the adversary’s attack,
reducing the swarm’s dispersion.

Hypothesis Haa2 states that swarms using the visual model will
fragment into fewer connected components compared to the topolog-
ical swarms, which will fragment less than the metric-based swarms.
The hypothesis is based on the metric model’s limited sensing range.

By definition, the topological model does not produce any isolated
agents for any ntop ≥ 1. Haa3 in relation to the visual and met-
ric models follows the same reasoning underlying Haa2: the metric
model’s limited sensing range will lead to a higher percentage of iso-
lated agents than the visual model.

The avoid an adversary task experiments were specified similarly
to the search for a goal task. The total number of trials for the avoid
adversary task was 3, 600: 600 trials for the metric and the visual
models, and 2, 400 trials for the topological model (600 trials for
each of the four values of ntop).

5.2 Results
Dispersion (A=70.16, p<0.001), number of connected compo-
nents (A=179.90, p<0.001), and percent isolated components
(A=296.44, p<0.001) were distributed normally according to the
Anderson-Darling test. Similar to the prior experiment, ntop was set
to 7, as the ANOVA found no significant interactions across the met-
rics by the topological number. Unlike the previous experiment, a
detail account of the medians and quartile ranges are not reported as
the medians were generally quite close to the means. Furthermore,
the interquartile ranges were tight (see Figure 6).

Overall, dispersion was the highest with the topological model
and the lowest with the visual model (see Table 2). An ANOVA
showed that model type had a significant impact on dispersion
(F (2,5398)=562.49, p<0.001). Fisher’s LSD test found the mean
dispersions to be significantly different across the three models.
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(a) Dispersion. (b) Dispersion.

(c) Number of connected components. (d) Percent isolated components.

Figure 6. The avoid an adversary task performance metrics. The legend for the plots (b)-(d) can be found in (a), where M , T7, and V denote the metric,
topological (with ntop = 7), and visual models, respectively.

Table 2. The avoid an adversary task descriptive statistics by models.
Dispersion, the number of connected components, and the percent isolated

components are denoted by D, CCO, and I , respectively.

Model Statistic D CCO I

Mean 275.61 4.46 1.19
Metric Median 144.71 4.00 1.00

Std. Dev. 334.85 2.78 1.38
Mean 493.92 1.75 0.00

Topological Median 421.50 2.00 0.00
Std. Dev. 356.32 0.79 0.00

Mean 232.03 1.35 0.33
Visual Median 168.68 1.00 0.00

Std. Dev. 196.64 0.58 0.54

ANOVAs revealed that the communication models had signif-
icant interactions for the number of agents (F (2,5398)=118.32,
p<0.001), the radius of repulsion (F (2,5398)=363.27, p<0.001),
the radius of orientation (F (2,5398)=26.15, p<0.001), and the ra-
dius of attraction (F (2,5398)=9.98, p<0.001).

Dispersion using the topological model was significantly higher
compared to the metric and the visual models for all values of N .
Fisher’s LSD tests showed that the visual model dispersion was sig-
nificantly lower compared to the metric model at N=50. However,
no significant difference between the metric and visual model disper-
sions was found for the other values of N (see Figure 6(a)).

Fisher’s LSD test found that the mean dispersion for the visual
model was significantly lower than the metric model at rrep=10, but
significantly higher than the metric model at rrep=20, as shown in
Figure 6(b). Similarly, as the values of the radii of orientation and at-
traction increased, the metric model’s dispersion decreased to a value
significantly lower than the visual model.

ANOVA determined that model type had a significant impact
on the number of connected components (F (2,5398)=1776.23,
p<0.001). This metric was significantly different between each of
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the communication models, as indicated by the Fisher’s LSD test.
The visual model had the lowest number of connected components,
while metric had the highest, as shown in Table 2.

The ANOVAs found significant interactions by the number
of agents (F (2,5398)=5.25, p<0.01), and the radii of repulsion
(F (2,5398)=772.53, p<0.001), orientation (F (2,5398)=133.89,
p<0.001), and attraction (F (2,5398)=53.72, p<0.001).

Fisher’s LSD test showed that the number of connected compo-
nents was significantly different between all three models across the
number of agents. Visual had the lowest number of connected com-
ponents, whereas metric had the highest, for all values of N .

The metric model generated fewer connected components as the
radius of attraction increased (see Figure 6(c). At ratt=80, there was
no significant difference between the metric and visual models in the
number of connected components.

The visual model produced values for the percent isolated com-
ponents that were typically lower than the metric model (Table 2).
ANOVA found a significant difference across the communication
models (F (2,5398)=489.78, p<0.001), and Fisher’s LSD test found
that the models had significantly different means from each other.

ANOVAs indicated that communication models had significant in-
teractions with the number of agents (F (2,5398)=8.14, p<0.001),
the radius of repulsion (F (2,5398)=232.23, p<0.001), the radius of
orientation (F (2,5398)=32.24, p<0.001), and the radius of attrac-
tion (F (2,5398)=29.28, p<0.001).

Similar to the connected components evaluations, the metric
model’s percent isolated components decreased as the size of the
radii of repulsion, orientation, and attraction (see Figure 6(d)) in-
creased. At, ratt=80, the metric model’s percent isolated compo-
nents was significantly lower than the visual model.

5.3 Discussion

The topological model produced the highest dispersion compared to
the other models. Haa1 was only partially supported due to the topo-
logical’s higher dispersion compared to the metric model.
Haa2 was fully supported, as the visual model produced the small-

est number of connected components, whereas the metric model
generated the highest number of connected components. The vi-
sual model’s percent isolated components was lower than the metric
model, which fully supports Haa3.

A high dispersion in some biological species may serve to con-
fuse a predator from singling out a particular swarm agent [3]. Thus,
if a higher dispersion is preferred, the general findings indicate that
the topological communication model is the best for the avoid an
adversary task, because it offers the highest dispersion, paired with
low connected components, and no isolated components. A high dis-
persion can be disadvantageous if environmental features physically
constrain the swarm’s movement. The metric and the visual models
are preferred for such environments, as they provide a lower disper-
sion. However, if a task requires a low percentage of isolated compo-
nents, then the visual model is preferred, otherwise, the metric com-
munication model will suffice.

The results across independent variables did not find the visual
model’s relatively larger communication range to provide an unfair
advantage over the metric model. At the highest radius of attraction,
or dmet=80, there was no significant difference in number of con-
nected components between the metric and visual models, despite
dvis being 425.

6 DISCUSSION AND CONCLUSION
The presented research focuses on a general hypothesis that the se-
lection of communication model impacts the swarm’s task perfor-
mance. The general findings demonstrated that there was a signifi-
cant impact of model type on task performance. Further, the results
show that the visual model resulted in the best overall task perfor-
mance for the search for a goal task, while the best overall perfor-
mance was achieved with the topological model for the avoid an ad-
versary task. The relevance of this outcome is that the intelligence of
a remotely deployed swarm is amplified through the deliberate selec-
tion of a communication model. Additional analysis of typical artifi-
cial swarm tasks is necessary to fully support the general hypothesis;
however, the presented results provide preliminary evidence that arti-
ficial swarm design needs to consider the communication model and
task pairing in order to optimize the overall swarm performance.

Based on the presented search for a goal and avoid an adversary
task results, connections can be made to the biological swarm liter-
ature. Couzin et. al. [10] showed that the size of the radius of re-
pulsion did not have an effect on the transitions between different
swarm movement patterns. Rather, the relative sizes of the radius of
orientation to the radius of repulsion and the radius of attraction to
the radius of orientation produces the transitions. For instance, sim-
ulated swarms rotate in a torus when the ratio of the radius of ori-
entation to the radius of repulsion is relatively low and the ratio of
the radius of attraction to the radius of orientation is relatively high.
Presented results for the search for a goal task conform to Couzin et.
al.’s [10] results in relation to the radius of repulsion. The duration of
this task (1000 iterations) resulted in trials that demonstrated swarm
movement patterns, as found by Couzin et. al.. Similar results were
expected for the avoid an adversary task; however, were not found
due to the task’s short duration (200 iterations).

The scope of the reported research does not follow the so-called
prescriptive agenda where the values of the model parameters are free
design choices [20, 27]; thus, dvis is not varied. This line of inquiry
will become necessary when prescribing the communication models
to specific platforms, such as the s-bots, which are equipped with
proximity and vision sensors [22]. Analyzing the effects of varying
model parameters, such as dmet and dvis will also be necessary due
to differences in the communication ranges across the platforms that
will attempt to adopt the models. For instance, the metric model can
be realized with omni-directional antennas, as well as infrared LED
sensors. The LED range is considerably smaller (10 cm in Kilobots
[25]). Similarly, exploring the effects of different values of ntop will
be useful. The topological model can be implemented using band-
limited communication channels [14], and for infrared-based, band-
limited platforms, such as the r-one, ntop will be inversely related to
the maximum communication range [21].
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Metis: system for early detection and prevention of
student failure

Damjan Kužnar1 and Matjaž Gams

Abstract. In this paper we first give an overview presentation of a
novel system Metis which aims to improve an existing educational
process with automatic prediction of student failure and also provide
tools in form of smartphone application to apply preventive mea-
sures with aim to mitigate a negative outcome. Metis uses artificial
intelligence, more specifically machine learning algorithms on data
stored in the school information system to identify students with an
increased risk of failing a course. Identified students are then referred
to an education professional, which will - on the basis of individual
consultations with the student - construct an action plan with appro-
priate measures to improve student’s performance. The action plan
program can be followed with smartphone application, which will
also serve as an interface for transmitting reminders, praise progress
and achievements of the objectives of the action plan. The paper then
gives a detailed description on the implementation of student failure
prediction module, which is the most important and novel component
of the Metis system, and performs an objective evaluation where we
report on encouraging results regarding the predictive performance
of the prediction module.

1 INTRODUCTION
The research presented in this paper is based on the Slovenian edu-
cational process and reflects challenges that are in some respect spe-
cific, however, we believe that our solution should be applicable in
any country or educational process.

Slovenian educational process is faced with relatively high rate
of students that do not progress through the educational program
as expected. This is most pronounced at secondary schools, which
recorded 11.1 % [13] of failed students on average in years between
2008 and 2012, and even more in tetriary (higher) education [12],
where 15 % of first year students failed on average in years between
2008 and 2013 and as high as 40% of students never progress to sec-
ond year. There are many reasons for this: wrong student choice of
the program, learning difficulties, personal problems, parents’ expec-
tations, social problems, behavioural problems or low self-esteem. If
these problems are detected early during the school year there is usu-
ally sufficient time for education professionals to offer assistance and
successfully mitigate a negative outcome – a student failure.

Current approach for detecting a student’s problems in school is
depicted in Figure 1. Learning difficulties are usually detected by
teachers when a student starts to get a series of negative grades,
which results in a significant drop in his/her performance, however
teachers feel that this is not systematic enough leaving every teacher
to decide on their own if any measures should be taken to help a stu-
dent to improve his/her school performance. It is usually expected of

1 Jozef Stefan Institute, email: damjan.kuznar@ijs.si

students to individually seek help from education professional, how-
ever, according to the study presented in [10], this happens in rare
cases (67 % of education professionals report this happens rarely) or
even never (7 % of education professionals). Similarly, parents who
detect learning difficulties of their child also seek assistance in rare
cases.

When learning difficulties are detected the student usually receives
assistance in form of additional studying help from teachers – he/she
get more attention during the class or is referred to additional classes.
If the student’s performance is not improved by these measures,
he/she is then referred to an education professional and if necessary
to special external educational services.

Usually, an experienced teacher that allocates enough time to fol-
low his/her students performance and is in constant interaction with
them and their parents is capable of detecting learning difficulties in
time. However, this is becoming more difficult due to recent changes
in educational standards in Slovenia, mostly due to the increase of
allowed number of students per class - maximum of 28 in primary
school and 32 in secondary school.

Informatization of the educational system in Slovenia has signifi-
cantly increased in the past several years. The switch to IT solutions
has already provided several benefits such as easier storage, access
and retrieval of all education related data – such as grades, absences,
praises, reproofs and more. However, using machine learning meth-
ods the usefulness of the recorded data can be further exploited to
provide means of automatic detection and prediction of learning dif-
ficulties, which is also the goal of the Metis system.

2 RELATED WORK
There already have been several attempts to predict the student aca-
demic performance in the literature, which served as a reference
when developing our system. The most similar attempt to student
failure prediction is reported in [10, 11], where the authors use a ge-
netic programming algorithm and different data mining approaches
for predicting student failure at school using real data about 670 high
school students from Zacatecas, Mexico. They also present a novel
method for inducing both more comprehensible and accurate IF-
THEN rules by using the genetic algorithm. However, their student
data was more feature rich, more precisely it contained additional in-
formation about the student’s socioeconomic status, personal, social,
family and school factors which they acquired through surveys and
resulted in 77 features. Similar work is also reported in [6], where
authors use university students’ (as opposed to our work on high
school students) internim tests data of Artificial Intelligence course
and machine learning to predict the students’ final performance in
the course. Using the learned decision tree the authors then manually
extracted the IF-THEN rules and encoded them in semantic web rule
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Figure 1. Current process of detection and prevention of student’s learning difficulties.

language (SWRL) and used them in their Artificial Intelligence Tu-
toring System. Similarly, [9] also deals with predicting the academic
progress of university student. The authors present a novel three tier
architecture that uses educational data mining (EDM) techniques to
predict and to identify those who are at dropout risk. When tested
on data of three undergraduate engineering courses of one the largest
Brazilian public university, they achieved best results using the Naı̈ve
Bayes classifier. In [16] authors report on a large-scale study to iden-
tify students at risk of not meeting acceptable levels of performance
in one state-level and one national standardized assessment in Grade
8 of a major US school district. This significantly differs from our
goal of “real time” (on a daily basis) prediction of student’s failure.
In [17] the authors studied the problem of predicting student per-
formance in an online course. Their goal was to identify at an early
stage of the course those students who have a high risk of failing
by using the k-nearest neighbor method (KNN) and they report that
KNN can predict student performance accurately, and already after
the very first lessons. Similar to our approach, they used the devel-
oped methods to implement an early warning feature for teachers of
the touch-typing course, so they can quickly focus their attention to
the students who need help the most.

More general overview of the benefits of using analytics on data
gathered by different Learning Management Systems (also called e-
learning systems) that are used at several universities in the USA
is given in [5]. They report that using learning analytics on LMSs
enables faculties to identify at-risk learners and provide interven-
tions, transform pedagogical approaches, and help students gain in-
sight into their own learning. A more comprehensive recent survey
on predicting student performance is available in [8].

3 METIS ARCHITECTURE

A high level overview of the Metis system architecture is shown
in Figure 2. There are three main components which are depicted
as grey boxes. The most important component is the student failure
prediction module which is integrated into the existing cloud based
school information system, which is used by the majority of the
Slovenian schools and has data of nearly 250.000 students (primary
and high school). Its main functionalities include extracting student
data from the information system, transformation and preprocessing
of the data, model training and prediction of student failure on regu-
lar basis (e.g. daily or weekly). The results of predictions are sent to
the class or form teacher who upon reviewing the prediction results
and student’s records ultimately decides whether any preventive ac-
tions are necessary to avoid the student’s class failure. If the teacher

decides to act, he/she can use a failure prevention web app that helps
in defining and following the action plan that is expected to mitigate
the student’s negative outcome. The action plan is basically a study
agenda that specifies in detail what the student should be doing to
improve his/her performance – e.g. on Monday, 21.12.2015, from
15:00 till 16:00 do math homework. This type of help for preventing
failure was recognized by education professionals during the system
requirements analysis as most helpful for students with learning dif-
ficulties, since most of them lack the ability to plan their short and
long term studying activities. Once the action plan is defined it can
be synchronized with a student’s smartphone app (or also tablet) that
helps the student to follow the plan on a daily basis. This is mainly
achieved through alerts that a planned activity is about to start (by
using push notification technology). Once the activity is finished the
student is prompted to mark it as completed, which is again syn-
chronized back to the web app for the teacher to follow the student’s
progress.

Figure 2. Metis system architecture.

Although the web and smartphone application play the important
role in the prevention of the student’s failure, the remainder of this
paper will focus on the failure prediction module which has the most
significant scientific contribution.

4 PREDICTING STUDENT FAILURE

One of the most important requirements of Metis system is the ability
to make predictions on a regular (e.g. daily or weekly) basis. This is
necessary to detect possible future problems (such as student failure)
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early, when there is still time to act. However, this has several impli-
cations on how we approached the problem and how the evaluation
of the performance was conducted. In general we simulate time di-
mension when constructing the learning dataset – for each step in the
simulation (e.g. each day or week) we made a snapshot of the data
in the school information system and constructed a snapshot dataset.
After the simulation the snapshot datasets were merged into a single
learning dataset, where each instance corresponds to certain point in
time.

4.1 Student data
The prediction module has access to student grades throughout the
academic year, final semester grades (in Slovenia academic year is
split into two semesters) and records of absences. Student grades and
absences are basically time series data, therefore we applied feature
extraction to obtain features to be used in machine learning. Due to
the legal limitation (privacy rights) at the time of writing this paper
we had access to data of 692 high school students (all attending the
same high school), covering the time span from September 2011 till
August 2015. The data contains 107871 individual grades from 18
possible courses, however we decided to focus only on the four most
important courses (math, chemistry, Slovene and English) due to the
sufficient number of grades to have meaningful evaluation results –
they altogether contain 43319 individual grades. With access to all
students, we will be able to also include grades from other courses.

4.2 Learning data set
The learning data set is a union of multiple snapshot data sets that are
constructed during the simulation of the time dimension – as already
noted at the beginning of section 4. Each snapshot dataset therefore
has the same set of features that describe data set instances. As noted
in subsection 4.1 the data is in form of time series, therefore we ex-
tracted several statistics (mean values, standard deviation, etc.) and
have done this for the current semester up until the snapshot date and
for the entire previous semester. Therefore we have two sets of iden-
tical features, once for the current semester and once for the previous
semester. We extract the following statistics:

• grades count – the number of grades obtained for the given course
(separately defined in feature course name)

• grades maximum – highest achieved grade
• grades minimum – lowest achieved grade
• grades mean – average of grades
• grades std – standard deviation of grades
• grades mean ¡ 1.5 – a Boolean value indicating whether the grades

mean is lower than 1.5 – in Slovenia, grades are on the scale from
1 (negative) to 5 (the best)

• negative grades count – the number of negative grades
• ratio of negative grades – defined as negative grades count /

sum(grades), where sum(grades) is a sum of all grades (also neg-
ative)

• grades slope – expresses whether the grades are improving or
worsening with respect to the time order of the grades

• unauthorized absences count – number of absences that were not
authorized by a teacher or school

• authorized absences count – number of absences that were autho-
rized by a teacher or school

• all absences count – the sum of unauthorized and authorized ab-
sences count

• test absences count – the number of times the student did not at-
tend class when there was a planned test, either oral or written

In addition to the described statistics we also include six other fea-
tures which are not semester specific. These include:

• days remaining – number of days remaining until the end of the
semester

• grades count difference – the difference in number of grades be-
tween previous and current semester

• grades average difference – the difference in grades average be-
tween previous and current semester

• failed previously – a Boolean value indicating whether the student
failed the given course in previous semester

• course name – the name of the course to which this instance is
referring to

• student ID – the anonymized ID of the student, which is not used
in learning but is used during the evaluation

The target feature failed is a Boolean value which indicates
whether the student has failed the current semester or not. Altogether
there are 32 features and a target feature.

To construct the entire data set we used a time interval of one week
in our time simulation, which resulted in 256784 instances being gen-
erated. Given the nature of the problem, the dataset is heavily unbal-
anced (as shown in Figure 3), with 11992 (4.67 %) instances have
failure set to true and 244792 (95.33 %) instances have failure set to
false.

Failure=true
(4.67%)

Failure=false
(95.33%)

Figure 3. Learning data set imbalance.

5 EVALUATION
During the user requirements analysis the education professionals
expressed a requirement related to the performance of the classifier.
Their request was that the classifier’s precision [15] is greater than
some predefined threshold, where the threshold is time dependent.
More precisely, this means that the requested threshold increases as
we move closer to the semester end. For this purpose the teachers
defined two major milestones, one for each semester – 30th Novem-
ber for the 1st semester when their minimum required precision is
30 % and 28th February for the 2nd semester when their minimum
required precision is 40 %. Later we added additional milestones for
2nd semester due to insufficient number of recorded grades up until
the end of February (2nd semester starts on the 16th January) as can
be observed in Figure 4. Summary of all threshold is presented in
Table 1.
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Figure 4. Number of grades by month. Red background represents 1st
semester and blue background represents 2nd semester.

Table 1. Time depended mimumum requested precisions thresholds.

1st Semester 2nd Semester

Date 30.11 28.2. 31.3. 30.4. 31.5.
Precision 30 % 40 % 50 % 60 % 60 %

5.1 Finding the optimal classifier
Given the minimum threshold requirement the goal was to find a
classifier that would have the requested performance. The task of
finding it can be formulated as an optimization problem which we
tackled with a classifier hyper parameter optimization tool Hyperopt
[2], which is implemented in Python and uses Tree of Parzen Estima-
tors [3] algorithm to guide the search. The use of Hyperopt library
was mainly directed by the use of Python Scikit-learn [14] library
which was used for its implementation of various machine learning
methods.

Hyperopt was configured to find classifiers with highest F1 score,
which is defined as a geometric mean of precision and recall [1].
The reason for not optimizing on precision is that the precision can
usually be easily increased at the expense of a lower recall. Since
Hyperopt can optimize only single criteria, whereas our problem is
basically a multi-objective one, we decided to optimize F1 score to
obtain a variety of classifiers with similar F1 score but different pre-
cision/recall values. The outcome of the optimization is therefore a
set of non-dominant classifiers [18]. This set allows us to select a
classifier which has the best precision/recall tradeoff, more precisely,
we can easily select a classifier that has the highest recall rate at the
request minimum precision. It also opens up possibilities for setting
the threshold for each teacher individually to conform to his/her per-
sonal preferences – e.g. some teachers would like higher precision so
that they have to deal with less false positives.

5.2 Evaluation methodology
Since the time simulation was used to generate our data set, the in-
formation about student grades is shared among data set instances

within the same semester. Therefore we cannot use regular cross val-
idation method for classifier evaluation [1] – e.g. if the two instances
that correspond to two consecutive simulation steps (snapshots) are
the same, since no new grade or absence was recorded, and one in-
stance is placed in train and other in test set then this will not result
in fair assessment of performance. To avoid this problem, we imple-
mented a variation of the cross validation method that splits instances
based on the student IDs. This means that all instances that corre-
spond to one student are either in test or train data set. Moreover, we
ensured that the spits were stratified [7], meaning that train and test
data sets contain the same proportion of failed student, where a failed
student is defined as a student that had at least one failed course in
any semester.

We decided to separate the classifier learning for each of the two
semesters due to some particularities. During the data exploration
we learned that teachers tend to fail students more often in the 1st
semester than in 2nd semester (see Figure 5). We can also see that in
1st semester the teacher mostly give final semester grades to failed
student and not to students who do not fail. To overcome this we
added additional rule to our simulation for generating data set which
assigns failed = false (target feature) if the student does not have
a semester grade recorded and grades average value is grater than or
equal to 1.5. Figure 5 also shows a trend of increase in overall number
of final grades over the time span from 2011 till 2014. This is due to
the fact that the school information system became operational in
2011.

Figure 5. Failed and not failed classes over time.

5.3 Machine learning methods used

The selection of machine learning method was not performed in
advance but was rather defined as a part of optimization problem.
Therefore we allow for Hyperopt to select among the plethora of
machine learning methods that are implemented in the Scikit-learn
library, namely: Naı̈ve Bayes, Logistic Regression, Decision Tree,
Random Forrest, SVM with different types of kernel (linear, poly,
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rbf), Linear Discriminant Analysis (LDA) and Quadratic Discrim-
inant Analysis (QDA). We later removed the SVM classifiers with
poly and rbf kernels due to the time complexity of the algorithm
and therefore inability to infer a model in reasonable time. For each
method we optimized the wide array of parameters, which is too ex-
tensive to list them in this paper, however one of the most important
that is available to all methods is the class weight parameter, which
imposes weights to instances based on the value of the target feature.
This parameter is very important, due to the unbalanced dataset, and
usually significantly impacts the precision/recall trade-off – e.g. set-
ting high weight to class value true will result in higher recall and
lower precision for the true class.

5.4 Results
Results of the hyper parameter optimization can be seen in Figure
6, which is showing a scatter plot of non-dominant classifiers on di-
mensions of precision and recall. As we can see there is a near linear
tradeoff between the precision and recall – increasing one decreases
the other. Given the teacher’s minimum precision requirement we
can select the best classifier from the set – remove the classifiers that
do not achieve the minimum required precision and then select the
classifier with the highest recall.

Figure 6. Optimization results – non-dominant classifiers.

Figure 7 gives an insight on how the best classifier that we had
chosen from the set of non-dominant classifiers performs over time.
We can see that the performance of the classifier (in this particular
case a Logistic regression classifier) clearly increases as the predic-
tions come closer to the end of the semester as one would expect.
We can also observe a trend that the classifier performance increases
over the years as the number of instances increases (especially the
ones with failed=true). This increase can be attributed to the fact that
machine learning methods are generally capable of inferring better
models as the number of instances increases.

In regards to the teacher specified milestones, we can see in Ta-
ble 2 that we managed to find classifiers that achieve greater than re-
quested precision, while maintaining reasonably high recall and F1
score. The results shown in the table slightly differ from the observed
results in Figure 6, since they correspond to a smaller test data set,
where only instances from a specified dates are present.

Figure 7. Classifier performance over time. Precision is orange, recall is
purple, F1 score is red, total number of instances is gray and number of

failed=true instances is blue. Precision, recall and F1 score correspond to
the left scale and number of instances to the right scale.

Table 2. TABLE II. Achieved precision and recall at defined milestones.

1st Semester 2nd Semester

Date 30.11 28.2. 31.3. 30.4. 31.5.
Threshold 30 % 40 % 50 % 60 % 60 %

Precision 54.52 % 56.23 % 58.75 % 61.22 % 60.52 %
Recall 50.30 % 72.81 % 65.68 % 73.71 % 72.81 %
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6 CONCLUSION

We presented a novel system Metis for early detection of possible fu-
ture student failures and prevention through the use of a smartphone
application. As demonstrated in section 5 the system performs ac-
cording to the teacher’s needs with respect to the required minimum
precision of the detection. The evaluation of the prevention function-
ality is not in the scope of this paper. Moreover, an objective evalu-
ation will be only possible after extended period of its usage in edu-
cational process, after which we will be able to analyze its effect on
prevention of student failures.

In our future work we aim to increase the performance of the sys-
tem detection performance in several ways. Most importantly we
need to obtain the data for all the students that are stored in the cloud
based school information system. We expect that this alone will in-
crease the performance significantly. More data will also allow us to
include other courses into our learning, further increasing the data set
size. Another improvement might come from more fine grained sep-
aration of the learning problem into smaller problems – e.g. instead
of separating the learning into only two semesters we could sepa-
rate the learning phase into separate months. We also plan to apply
Metis system to the higher education institutions in Slovenia, since
the methodology presented in this paper should also be applicable
to detect problems at university level. However, the type of prob-
lems will probably have to be adjusted for the different educational
process at Universities - e.g. predicting whether the student will suc-
cessfully complete the studies.
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Combining Reinforcement Learning and Quantitative
Verification for Agent Policy Assurance

George Mason1 and Radu Calinescu2 and Daniel Kudenko3 and Alec Banks4

Abstract. Reinforcement learning (RL) agents converge to optimal
solutions for sequential decision making problems based on rewards
received after interactions with an uncertain environment. Despite
growing success in recent years, RL has limited appeal in applica-
tions where unpredictable agent behaviour can have significant unin-
tended negative consequences. To address this limitation, we intro-
duce an assured reinforcement learning (ARL) method which com-
bines RL and quantitative verification (QV) to restrict the agent be-
haviour during and after learning to areas that satisfy safety, reliabil-
ity and performance constraints specified in probabilistic temporal
logic. ARL uses a hierarchical approach that allows verification of
the constraints in more complex domains. To this end, ARL builds
an abstract Markov decision process (AMDP) that models the prob-
lem to solve at a high level, and uses QV to identify a set of Pareto-
optimal AMDP policies that satisfy the required constraints. These
formally verified abstract policies define areas of the agent behaviour
space where RL can then take place without constraint violations.
We show the effectiveness of our hybrid ARL method through a case
study that involved the development of an autonomous agent for a
benchmark flag-collection navigation task.

1 Introduction

Reinforcement learning (RL) [39] is a widely-used machine learn-
ing technique where an agent explores an initially unknown Markov
decision process (MDP) to find an optimal policy, i.e. the actions to
take in different MDP states in order to maximise the cumulative re-
ward while navigating the MDP. Despite successful adoption in some
robotics [35], sensing [25], gaming [6] and control [4] applications,
traditional RL cannot be used in mission- and safety-critical applica-
tions. In these applications, unpredictable agent actions can lead to
mission failure, increased risks to humans or other systems, or viola-
tions of legal requirements (e.g. in business domains) [7].

In this paper we present a new RL method that can be used in ap-
plications that must satisfy strict safety, reliability and performance
constraints. Our assured reinforcement learning (ARL) combines
traditional reinforcement learning with a formal analysis stage in
which the agent exploration is restricted to areas of the original MDP
that satisfy the required constraints. ARL carries out this analysis us-
ing quantitative verification (QV) [21], a mathematically based tech-
nique for establishing the reliability, performance and other quality-
of-service properties of stochastic systems. Particular advantages of
our hybrid ARL are scalability due to a hierarchical approach and

1 University of York, UK, email: grm504@york.ac.uk
2 University of York, UK, email: radu.calinescu@york.ac.uk
3 University of York, UK, email: daniel.kudenko@york.ac.uk
4 Defence Science and Technology Laboratory, UK

convenience of formulating required constraints by using an expres-
sive representation language that has been successfully applied in
quantitative verification.

Specifically, ARL supports constraints specified in a variant of
probabilistic temporal logic called probabilistic computation tree
logic (PCTL) [19], and comprises a QV stage and an RL stage. In
the QV stage, expert-provided knowledge of the scenario is given
in the form of an abstract Markov decision process (AMDP) [30],
a common and feasible practice in safety engineering [26, 9, 14].
Compared to the complete MDP to be explored by the RL agent,
the AMDP can be assembled with only limited understanding of the
problem, and has a significantly reduced state space and a simplified
action set [27, 30, 36] that enable efficient analysis which would not
have been feasible without this hierarchical approach. Given a set of
PCTL constraints, quantitative verification is then used to identify
AMDP policies that satisfy all these constraints. Each of these “safe”
abstract policies resolves some of the nondeterminism of the origi-
nal MDP, inducing a restricted MDP that the agent explores in the
reinforcement learning stage of our ARL method without violating
any of the constraints.

As described above, ARL incorporates a set of constraints on the
behaviour of a reinforcement learning agent both in the learning pro-
cess and in the learnt policy. Multiple “safe” abstract policies are
typically generated during the QV stage. ARL supports the selec-
tion of a suitable abstract policy for the RL stage by retaining only
the abstract policies that are Pareto-optimal with respect to optimiza-
tion objectives associated with constraints from the QV stage and/or
specified additionally.

Our work contributes to the ongoing research on safe reinforce-
ment learning [16]. Thus, ARL complements the existing con-
strained optimisation approaches to safe RL, in which the agent
seeks a policy that maximises its obtained reward subject to a set
of constraints. To the best of our knowledge, ARL is the first such
approach that supports the broad range of safety, reliability and per-
formance constraints that can be formally specified in PCTL [19]
extended with rewards [2], and that uses quantitative verification
[21] to identify allowable MDP policies. In contrast, the existing ap-
proaches are typically limited to specifying bounds for the reward
obtained by the RL agent or for simple measures related to this re-
ward [1, 8, 11, 17, 33, 34].

The remainder of this paper is organized as follows. Section 2 in-
troduces the technologies that are used in ARL. Section 3 provides
an example scenario, based on the benchmark RL flag-collection do-
main [10] and modified to include an aspect of risk where the appli-
cation of ARL is necessary. Section 4 outlines the procedure for using
ARL, using the example scenario to illustrate the process. Section 5
evaluates ARL through a case study based on the running example.
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Section 6 discusses related research, and Section 7 summarizes our
results and discusses directions for future work.

2 Background

2.1 Markov Decision Processes (MDPs)

Markov decision processes represent a formalism for modelling se-
quential decision-making problems [39]. An MDP models an envi-
ronment in which an autonomous agent can perceive the current state
s and select an action a from a set of actions. Performing the selected
action a results in the agent transitioning to a new state s′ and re-
ceiving an immediate numerical reward r ∈ R. Formally, an MDP is
defined as a tuple (S,A, T,R), where:

• S is a set of states;
• A is a set of actions;
• T is a state transition function such that for any s, s′ ∈ S and

any action a ∈ A that is permitted in state s, T (s, a, s′) gives the
probability of transitioning to state s′ when performing action a
in state s;

• R is a reward function such that R(s, a, s′) = r is the reward
received by the agent when action a performed in state s leads to
state s′.

A related concept that is central to RL is that of a policy. ARL uses
deterministic policies, i.e. mappings of the form π : S → A that
associate each state s∈S to one of the actions allowed in state s.

When all elements of the MDP are known, the problem can be
solved using dynamic programming, e.g. by using the value or policy
iteration algorithms. In scenarios where the transition and/or reward
functions are unknown a priori, RL needs to be used as described in
Section 2.3.

2.2 Quantitative Verification (QV)

QV is a formal verification technique used to establish safety, reli-
ability, performance and other non-functional properties of systems
through the analysis of their stochastic models [21, 22]. Unlike tech-
niques like testing and simulation, QV uses efficient algorithms to
examine the entire state space of the analysed model, yielding results
that are guaranteed to be correct. QV supports the analysis of mod-
els including MDPs, Markov chains and probabilistic automata. The
analysed properties of these models are specified formally in prob-
abilistic variants of temporal logic. QV is performed using efficient
probabilistic model checkers, such as PRISM [24] or MRMC [20].

For the analysis of MDPs, QV labels the model states with atomic
propositions that specify basic properties of interest that hold in each
MDP state, e.g. success, fail or retry. MDPs labelled with atomic
propositions enable the QV of properties that express probabilities
and temporal relationships between events. For example, QV can ver-
ify if the probability of achieving success without any retry (i.e. of
reaching a state labelled success without passing through a state la-
belled retry) is at least 0.95. These properties are specified in a prob-
abilistic temporal logic called probabilistic computational tree logic
(PCTL) [19]. Given a set of atomic propositionsAP , a state formula
Φ and a path formula Ψ in PCTL are defined by the grammar:

Φ ::= true | a | ¬Φ | Φ1 ∧ Φ2 | P./p[Ψ]

Ψ ::= XΦ | Φ1 U Φ2 | Φ1 U≤k Φ2
, (1)

where a ∈ AP , ./ ∈ {<,≤,≥, >}, p ∈ [0, 1] and k ∈ N; and a
PCTL reward state formula [23] is defined by the grammar:

Φ ::= R./r[I=k] | R./r[C≤k] | R./r[FΦ] | R./r[S], (2)

where r∈R≥0. State formulae include the logical operators ∧ and ¬,
which allow the formulation of disjunction (∨) and implication (⇒).

The semantics of PCTL are defined with a satisfaction relation |=
over the states and paths of an MDP (S,A, T,R). Thus, s |= Φ
means Φ is satisfied in state s. For any state s ∈ S, we have: s |=
true; s |= a iff s is labelled with the atomic proposition a; s |= ¬Φ
iff ¬(s |= Φ); and s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2. A
state formula P./p[Ψ] is satisfied in a state s if the probability of the
future evolution of the system satisfying Ψ satisfies ./ p. For an MDP
path s1s2s3 . . ., the “next state” formula X Φ holds iff Φ is satisfied
in the next path state (i.e. in state s2); the bounded until formula
Φ1 U≤k Φ2 holds iff before Φ2 becomes true is some state sx, x < k,
Φ1 is satisfied for states s1 to sx−1; and the unbounded until formula
Φ1 U Φ2 removes the constraint x < k from the bounded until. For
instance, the PCTL formula P≥0.95[¬retryUsuccess] formalises the
constraint ‘the probability of reaching success without retry is at least
0.95’ from the earlier example.

The notation F≤kΦ ≡ trueU≤kΦ, and FΦ ≡ trueUΦ is used
when the first part of a bounded until, and until formula, respectively,
are true . The reward state formulae (2) express the expected cost at
timestep k (R./r[I=k]), the expected cumulative cost up to time step
k (R./r[C≤k]), the expected cumulative cost to reach a future state
that satisfies a property Φ (R./r[FΦ]), and the expected steady-state
reward in the long run (R./r[S]).

Finally, probabilistic model checkers also support PCTL formulae
in which the bounds ‘./ p’ and ‘./ r’ are replaced with ‘=?’, to
indicate that the computation of the actual bound is required. For
example, P=?[F≤20success] expresses the probability of succeeding
(i.e. of reaching a state labelled success) within 20 time steps.

2.3 Reinforcement Learning (RL)
An RL agent starts with no knowledge of the environment, and must
learn about it by exploration, i.e. by selecting initially arbitrary ac-
tions while moving from one state of the unknown MDP to another.
By receiving rewards after each state transition, the agent learns
about the quality of its action choices. The agent stores this knowl-
edge it gains about the quality of a state-action pair (s, a) in the form
of a Q-value, denoted Q(s, a). Updates to Q-values are done using a
temporal difference learning algorithm, such as Q-learning [38]. The
Q-learning algorithm has the update formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)], (3)

where α is the learning rate and γ is the discount factor. Through
these updates, information about rewards in the environment are
propagated over the state-action pairs.

With these Q-values the agent can exploit the knowledge it has al-
ready learned: when revisiting a state, instead of randomly selecting
an action to perform, it can select an action based on a pre-defined
policy. An example of such a policy is the ε-greedy policy, where
with probability ε the agent will act randomly and with probability
1−ε if will select the highest-value action it knows about [39].

Provided that each state in the MDP is visited an infinite number
of times and there are conditions on α the algorithm is guaranteed to
converge to an optimal policy. In practice, a finite number of learning
iterations, known as learning episodes, is typically sufficient to obtain
a policy that is sufficiently close to the optimal policy.

46



2.4 Abstract MDPs (AMDPs)

An AMDP is a high-level representation of an MDP in which multi-
ple states of the MDP are aggregated (e.g. based on their similarity
[27]). Additionally, the low-level actions of the MDP are replaced
by temporally abstract options [36]. For example, instead of an agent
performing a sequence of stepwise movements to transition through
a series of Cartesian coordinates from location A to enter location
B, in an AMDP each location would be a single state and the op-
tion would simply be to “move” from one location to the other. An
AMDP is orders of magnitude smaller than its MDP counterpart, can
often be assembled with significantly less knowledge about the envi-
ronment, and can be solved and reasoned about much faster [30].

Given an MDP (S,A, T,R) and a function z : S → S̄ that maps
each state s ∈ S to an abstract state z(s) ∈ S̄ such that z(S) = S̄,
an AMDP can be formally defined as a tuple (S̄, Ā, T̄ , R̄), where:

• S̄ is the set of abstract states;
• Ā is the set of options;
• T̄ is a state transition function such that T̄ (s̄, o, s̄′) =∑

s∈S,z(s)=s̄ ws

∑
s′∈S,z(s′)=s̄′ P (s′|s, o) for any s̄, s̄′ ∈ S̄ and

any option o ∈ Ā;
• R̄ is a reward function such that, for any s̄ ∈ S̄ and any o ∈ Ā,
R̄(s̄, o) =

∑
s∈S,z(s)=s̄ wsR(s, o),

where ws is the weight of state s, calculated based on the expected
frequency of occurrence of state s in the abstract state z(s) [30].

A parameterised AMDP uses parameters to specify which option
to perform in each AMDP state [40]. An abstract policy fixes the
values of all these parameters, and thus resolves the non-determinism
of the AMDP, essentially transforming it into a Markov chain since
there is a fixed, single option for each state.

3 Running Example

We will illustrate the application of ARL using an extension of the
benchmark RL flag-collection mission from [10]. In the original mis-
sion, an agent learns to navigate a series of rooms and hallways in
order to find and collect flags scattered throughout a building. In our
extension, the building is augmented with security cameras that mon-
itor certain doorways between areas. The detection of the agent by a
camera results in the capture of the agent and the termination of its
flag-collection mission. An illustration of this environment is shown
in Figure 1.

The agent is camouflaged, yet there is still a probability that it
can be detected. Unknown to the agent, the detection effectiveness
of the cameras decreases towards the boundary of their field of vi-
sion. We represent this by sectioning the camera-monitored door-
ways into three areas: direct view by the camera, partial view, and
hidden. These three areas are associated with decreasing probabili-
ties of detection (Table 1).

Table 1. Detection probabilities when transitioning between areas.

View Detection Probabilities

Area Transitions Direct Partial Hidden

HallA ↔ RoomA
HallB ↔ RoomB
HallB ↔ RoomC

RoomC ↔ RoomE

0.18 0.12 0.06
0.15 0.1 0.05
0.15 0.1 0.05
0.21 0.14 0.07

Start

Goal

Figure 1. Augmented flag-collection domain, showing the locations of the
security cameras and their scope of vision, start and goal positions for the

agent and flags to collect A-F.

The only information available to the agent is a list of the rooms,
hallways and doorways in the building, and conservative estimates of
the detection probabilities for the doorways equipped with a camera.
These conservative estimates correspond to the probability of direct-
view detection from Table 1.

Suppose that in the real world, where the agent is actually a physi-
cal vehicle of some value, the owners of the vehicle wish for the safe
return of it. However, they do not want it to behave “too safely” or it
will not collect enough flags. Therefore, they specify the constraints
from Table 2 for the agent. In this way, the right level of risk can
be selected for each instance of the mission. Note that formulating
the constraints C1 and C2 into a reward function and using standard
RL to solve the problem is not possible because an RL agent aims to
maximize its reward rather than to maintain it in a specified range.

Table 2. Constraints for the flag-collection mission

ID Constraint PCTL

C1 The probability that the agent reaches the
‘goal’ area should be at least 0.75

P≥0.75[F goal ]

C2 The agent should cumulate a reward greater
than 2 when it reaches the ’goal’

R>2[F goal ]

4 Method
As shown in Figure 2, ARL takes as input a description of the
problem to solve that comprises: (a) incomplete knowledge about
the environment (i.e. problem); and (b) the set of constraints C =
{C1, C2, . . . , Cn} that must be satisfied by the policy obtained by
the RL agent. The incomplete knowledge must contain sufficient in-
formation for the conservative QV analysis of the environment prop-
erties associated with the n > 0 constraints. For instance, given the
constraint C1 from Table 2, it is sufficient to know a conservative
lower bound for the detection probabilities of the cameras from the
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abstract
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Safe
RL
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Figure 2. Stages of the ARL method.

flag-collection mission in our running example. Note that the incom-
plete knowledge about the environment assumed by ARL is neces-
sary: no constraints could be ensured during RL exploration in the
absence of any information about the environment.

Under the assumptions detailed above, our ARL method yields
a policy that satisfies the constraints C. To this end, ARL employs
a process that integrates quantitative verification and reinforcement
learning, and comprises the following stages:

1. AMDP construction – This ARL stage devises a parameterised
AMDP model of the RL problem that supports the QV of the con-
straints C1, C2, . . . , Cn.

2. Abstract policy synthesis – This stage generates AMDP policies
(i.e. abstract policies) that satisfy the problem constraints. These
“safe” policies are used to assemble an approximate Pareto-front
of abstract policies. The optimisation objectives used to estab-
lish the Pareto dominance between different abstract policies are
derived directly from the constraints (as described later in Sec-
tion 4.2) or specified manually.

3. Safe learning – In this ARL stage, a suitable abstract policy from
the Pareto-front is selected, and translated into state-action con-
straints for the exploration of the environment by the RL agent.
Accordingly, the RL agent obtains an optimal policy that complies
with the problem constraints.

4.1 Stage 1: AMDP Construction

In this ARL stage, all features that are relevant for the problem con-
straints must be extracted from the available incomplete knowledge
about the RL environment. This could include locations, events, re-
wards, actions or progress levels. The objective is to abstract out the
features that have no impact on the solution attributes that the con-
straints C refer to, whilst retaining as much detail as possible about
the key features that these attributes depend on. This ensures that the
constructed AMDP is sufficiently small to be analysed using quanti-
tative verification, while also containing the necessary details to en-
able the analysis of all constraints.

In our running example, the key features are the locations and con-
nections of rooms and halls, the detection probabilities of the cam-
eras and the progress of the flags collected. Instead of having each
(potentially unknown) Cartesian coordinate within a room or hall as
a separate state, the room or hall as a whole is considered a single
state in the AMDP. Also, we only consider the conservative detec-
tion probability per camera (which allows a conservative verification
of constraint C1 from Table 2), since the probabilities from Table 1
are unknown to the agent at this stage.

These abstractions reduce the size of the RL MDP, which is un-
known to the agent and contains 14,976 states, to just 448 states for

the associated AMDP. Note that the number of AMDP states is larger
than the number of locations (i.e. rooms and halls) because different
AMDP states are used for each possible combination of a location
and a number of flags collected so far.

The actions of the full RL MDP should be similarly abstracted.
For example, instead of having the cardinal movements at each loca-
tion of the building from our running example, abstract actions (i.e.
options – cf. Section 2.1) are specified as simply the movement be-
tween locations. Thus, instead of the four possible actions for each
of the 14,976 MDP state, the 448 AMDP states have only between
one and four possible options each. The m options that are avail-
able for an AMDP state correspond to the m ≥ 1 passageways that
link the location associated with that state with other locations, and
can be encoded using a state parameter that takes one of the discrete
values 1, 2, . . . , m. The parameters for AMDP states with a single
passageway (corresponding to rooms A, B and E from Figure 1) can
only take the value 1 and are therefore discarded. This leaves a set of
256 parameters that correspond to approximately 4 × 1099 possible
abstract policies.

4.2 Stage 2: Abstract Policy Synthesis

In this ARL stage, a heuristic is used to find abstract policies that
satisfy the constraints C for the AMDP constructed in Stage 1. The
process is made easy by the use of the state parameters proposed in
the previous section. Thus, each abstract policy can be obtained by
assigning suitable values to these parameters. Fixing these parameter
values in the AMDP resolves all nondeterminism, and the resulting
model (which is a Markov chain) can be verified using QV, to estab-
lish if the abstract policy satisfies each constraint from C. If it does,
the policy is deemed “safe”, and is considered for inclusion in an
approximate Pareto-optimal set of abstract policies. This set consists
of abstract policies that Pareto-dominate each other according to a
number of optimisation objectives such as probability of success or
cumulated reward, where a policy πA is said to Pareto-dominate an-
other policy πB iff πA gives superior results to πB for at least one
objective, and for all other objectives πA it is at least as good as πB

[28]. A Pareto-optimal set and the associated Pareto-front of objec-
tive values allow an acceptable trade-off between objectives to be
determined a posteriori.

The optimisation objectives used to assess if either of two abstract
policies Pareto-dominates the other can be specified manually or can
be derived automatically from the constraints C. In the former case,
additional PCTL formulae need to be formulated. In the latter case,
the PCTL formula for each constraintCi that specifies a lower bound
for an attribute of the RL problem is interpreted as an attribute whose
value should be maximised. Conversely, attributes for which upper
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bounds are specified in the problem constraints are considered at-
tributes whose value should be minimised.

In our running example, the two constraints for the flag-collection
problem specify lower bounds both for the probability that the agent
reaches the ‘goal’ area and for the reward cumulated by the RL agent.
Therefore, using automated selection of optimisation objectives for
the running example yields an approximate Pareto-front correspond-
ing to these two attributes being maximized.

Pareto-front generation is orthogonal to our method; an effective
approach that uses multi-objective optimisation genetic algorithms
to automate the ARL abstract policy synthesis for very large search
spaces has recently been proposed in [18], and can be directly em-
ployed by ARL. Alternatively, simple random search can be used for
the same purpose, as in the case study that we describe later in the
paper. Both our case study and the approach from [18] use the prob-
abilistic model checker PRISM [24] for the quantitative verification
of the PCTL-encoded constraints, so switching to using the approach
from [18] is straightforward.

4.3 Stage 3: Safe learning
The last ARL stage exploits the approximate Pareto-optimal set of
abstract policies synthesised in Stage 2. A policy is selected from
this set by taking into account the trade-offs that different policies
achieve for the optimisation objectives used to assemble the set. The
selected abstract policy is then used to ensure that the RL agent
achieves the required constraints by removing the low-level MDP ac-
tions that do not correspond to options from the abstract policy. For
instance, assume that the selected abstract policy for our running ex-
ample requires the agent to never enter RoomA. In this case, should
the agent be at Cartesian coordinates (5,9) (i.e. the position imme-
diately to the North of the Start position), the action to move North
and thus to enter RoomA is removed from the agent’s action set, for
this specific state. By disallowing the actions that are not associated
with options permitted by the abstract policy, the RL agent’s learning
and learnt low-level behaviours are guaranteed to satisfy the problem
constraints, as illustrated in the next section for two case studies.

Abstract policies intentionally reduce agent autonomy to prevent
unsafe actions, but do not preclude it completely. For example, in
the running example the agent must learn the flag locations within
the rooms as well as the doorway areas safest to cross, information
which is not contained within the abstract policies. Whilst abstract
policy constraints may yield suboptimal RL policies with respect to
the RL model in its entirety, this key feature guarantees safety and
speeds learning.

5 Evaluation
5.1 Experimental Setup
We evaluated the effectiveness and generality of our ARL approach
by applying it to a case study based on the navigation task described
in Section 3, where the learning agent must navigate a guarded en-
vironment comprising hallways and rooms in order to collect flags
distributed throughout.

For this case study we conducted a set of four experiments. The
first of these experiments did not involve the use of our ARL ap-
proach, and was a standard RL implementation of the case study.
This experiment serves as a baseline which we contrast with the ARL
experiments in order to determine the effects of our method.

For all experiments we use a discount factor γ = 0.99 and a
learning rate α = 0.1 which decays to 0 over the learning run. For

the baseline experiment we use an exploration probability ε = 0.8
and for the ARL experiments ε = 0.6, both decaying to 0 over the
learning run. These values of ε have been chosen empirically in line
with standard RL practice. As is standard practice when evaluating
stochastic processes, we repeated each experiment multiple times
(i.e. five times) and we evaluated the final policy for each experiment
many times (i.e. 10,000 times) in order to ensure that the results are
suitably significant [3].

Learning evaluation is done after each learning episode during a
run, whilst we only perform five learning runs per experiment, error
bars for the standard error of the mean show the statistical signifi-
cance of the learning (Figures 4 and 5). Policy evaluations were done
once learning had finished (Table 4).

5.2 Case Study
This case study is based on the scenario described in Section 3 and
referred to throughout Section 4. In the interest of brevity, the details
presented in these two previous sections will not be repeated here.

In our RL implementation, the agent receives a reward of 1 for
each flag it collects and an additional reward of 1 for reaching the
‘goal’ area of the building. If the agent is captured the agent receives
a reward of -1, regardless of any flags already collected.

We used the AMDP constructed during the first ARL stage as de-
scribed in Section 4.1. In the second ARL stage, we generated 10,000
abstract policies with parameter values (i.e. state to action mappings)
drawn randomly from a uniform distribution. Out of these abstract
policies, QV using the probabilistic model checker PRISM identified
14 policies that satisfied the two constraints from Table 2. Figure 3
shows the QV results obtained for these 14 abstract policies, i.e. their
associated probability of reaching the ‘goal’ area and expected num-
ber of flags collected. The approximate Pareto-front depicted in this
figure was obtained using the two optimization objectives described
in Section 4.2, i.e. maximizing the expected number of flags collected
and the probability of reaching the ‘goal’ area of the building.
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Figure 3. Pareto-front of abstract policies that satisfy the constraints from
Table 2.

From this Pareto-front we selected three abstract policies to use
in different experiments during the safe learning ARL stage, as ex-
plained in Section 4.3. The properties of these three abstract policies
are shown in Table 3.
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Table 3. Selected abstract policies to use for ARL in the guarded
flag-collection.

Abstract Policy Probability of Reaching
‘goal’ Expected Reward

A 0.9 2.85
B 0.81 3.62
C 0.78 4.5

The baseline experiment (which did not use ARL) performed
2 × 107 learning episodes, each with 10,000 steps. This did not,
however, reach a global optimum. Even after extensive learning, in
excess of 109 learning episodes, conventional RL did not attain a su-
perior solution. In contrast to our experiments where ARL was used,
cf. abstract policy C, Table 4, a superior policy was learned much
faster, further demonstrating the advantages of our approach. Fig-
ure 4 shows the learning progress for this experiment.
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Figure 4. Learning for guarded flag-collection with no ARL applied.

Next, we ran three further sets of RL experiments, one for each
of the abstract policies from Table 3. It was not necessary to have
so many learning episodes as for the baseline experiment, since the
abstract policy had the effect of guiding the agent with regard to the
locations to enter next, and therefore only 105 episodes were nec-
essary for the learning to converge. Figure 5 show the RL learning
progress for each of the abstract policies used for ARL.

As can be seen from the results summarized in Table 4, the ex-
periments where an abstract policy was applied resulted in an RL
policy that: (a) satisfied the problem constraints from Table 2; and
(b) matched the probability of reaching the ‘goal’ area and the ex-
pected reward of the abstract policy (cf. Table 3). The baseline ex-
periment gave results that do not satisfy our constraints, which was
expected given that only 14 of the 10,000 abstract policies synthe-
sised by ARL satisfied these constraints.

6 Related Work
The ARL technique introduced in our paper belongs to a class of
RL techniques called safe reinforcement learning [16]. The previ-
ous research on safe RL has proposed techniques that can enforce
bounds on the either the reward obtained by the RL agent or on sim-
ple measures that are related to this reward. The technique proposed
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Figure 5. Learning for guarded flag-collection with ARL applied using the
selected abstract policies A, B and C.

by Geibel [17] supports an inequality constraint on the reward cu-
mulated by the RL agent or a maximum permitted probability for
such a constraint to be violated. Safe RL techniques that support
similar constraints by generalizing chance-constrained planning to
infinite-horizon MDPs are presented by Mannor and Delage [11] and
Ponda et al. [34]. The constraints supported by [11, 17, 34] are a sub-
set of the types of constraints supported by ARL, which can handle
the wide range of constraints that can be specified in PCTL.

Abe et al. [1] describe a safe RL technique in which high-level
business and legal “constraint rules” are enforced during each value
iteration of the RL process, and apply it to a tax collection optimiza-
tion problem. Building on insights from financial decision making
and robust process control, Casto et al. [8] introduce a safe RL tech-
nique that enforces constraints on the cumulative reward obtained by
the RL agent, on the variance of this reward, or on some combination
of the two. Moldovan and Abbeel [33] introduce a safe RL technique
that enforces the RL agent to avoid irreversible actions by visiting
only states from which it can return to the initial state. Our ARL
technique operates with different types of constraints than [1, 8, 33],
and is therefore complementary to these results.

ARL also differs from the existing safe RL approaches through
its unique integration of quantitative verification and reinforcement
learning, and use of abstract policies to enforce safe learning and a
safe learnt policy. In contrast, existing techniques operate by modi-
fying the reward function to “penalize” agent actions associated with
high variance in the probability of attaining the reward [31] or to
avoid irreversible actions [33], or by using domain knowledge to
avoid unsafe states altogether [12].

Another distinguishing characteristic of ARL is its synthesis of
an approximate Pareto-optimal set of permissible (abstract) policies.
This offers a broad choice of trade-offs between relevant attributes
of the optimisation problem that is not supported by existing safe RL
techniques. A different area of RL research known as multi-objective
RL (MORL) [28, 37] has also considered the problem of learning a
policy that satisfies multiple objectives that may conflict with each
other. However, neither single-policy MORL algorithms (which learn
an optimal policy for each objective and then combine them to form
a single policy [15, 29]) nor multi-policy algorithms (which learn
an approximate Pareto-front for each objective [5] or a joint Pareto-
front [32]) support the rich expressiveness provided by ARL through
its use of reward-augmented PCTL constraints.
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Table 4. Results for baseline and ARL experiments for guarded flag-collection.

Abstract Policy Probability of Reaching ‘goal’ Standard Error Expected Reward Standard Error

None 0.72 0.0073 4.01 0.031
A 0.9 0.0012 2.85 0.0029
B 0.81 0.0019 3.62 0.0037
C 0.78 0.0012 4.5 0.0041

7 Conclusion

We proposed the use of an abstract MDP formally analysed using
quantitative verification as a means to restrict the action set of an
RL agent to the actions that were proven to satisfy a set of required
constraints, adding to the growing research on safe RL. Through a
case study based on the benchmark RL flag-collection domain, we
demonstrated that the hybrid ARL technique can be applied success-
fully. ARL requires that partial knowledge of the problem is provided
a priori, and makes the typical assumption that RL will converge to-
wards the optimal policy.

Unlike standard RL, our technique supports a wide range of safety,
performance and reliability constraints that cannot be expressed us-
ing a single reward function and are not supported by existing safe
RL techniques. Furthermore, the use of an AMDP allows the appli-
cation of ARL with only limited knowledge about the environment,
and ensures that ARL scales to much larger and complex models
than would otherwise be feasible. Additionally, the construction of
the AMDP and the expressiveness of the PCTL formulae, an expres-
sive and convenient representation formalism for required properties,
enables on the fly experimentation of constraints and properties with-
out requiring modification of the underlying model.

Our future work on the ARL technique will include exploiting
some of the more sophisticated constraints that can be specified in
PCTL. For example, unbounded until PCTL formulae can be used to
constrain the order in which the agent visits different rooms in the
guarded flag-collection case study, e.g. P≥0.9[¬RoomA URoomB ]
requires that, with a probability of at least 0.9, the agent should not
visit RoomA before RoomB. Furthermore, bounded until PCTL for-
mulae can additionally place constraints on the number of time steps
taken to achieve a certain outcome.

Additionally, we plan to research a means of updating the AMDP
should it not accurately reflect the RL MDP. In the event that the RL
agent encounters dynamics in the RL MDP that do not correlate with
the AMDP, a means of feeding back this information to update the
AMDP can be developed based on [13]. After updating the AMDP
the constraints will need to be reverified and, if necessary, a new
abstract policy will be generated.

Finally, we also plan to explore the possibility to employ multi-
objective RL [28, 37] in the abstract policy synthesis of ARL, and
to develop a variant of the technique where the actions restricted
through QV and those learnt by the RL agent belong to disjoint sets.
This ARL variant will support the common scenario in which a set
of system attributes like cost and energy usage need to be optimised
once strict constraints are guaranteed to be satisfied for some other
system attributes such as availability and response time.
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Regularizing Deep Learning Ensembles by Distillation

Alan Mosca1 and George D Magoulas1

Abstract. Ensemble methods are often utilised to improve the gen-

eralisation of a model, by exploiting the diversity of multiple un-

derlying learners trained on data of the same problem. When ap-

plied to Deep Learning, this requires the use of very large models

that have to be trained multiple times, and the requirements of using

Deep Learning Ensembles at test-time can be considerably high. It

has been shown that a Deep Neural Network can be approximated

by a smaller network, if it has been trained to reproduce the output

of the larger network, in a process called distillation. It has also been

shown previously that an Ensemble can be approximated by an Ar-

tificial Neural Network, with the introduction of additional training

pseudo-data. We observe that it is possible to apply the same prin-

ciples to approximate an Ensemble of Deep Neural Networks with a

single Deep Network of the same kind and with the same structure

as the members of the Ensemble, without significant loss of general-

isation, without additional synthetic training data, and without hav-

ing to use special provisions to train the new network, such as using

the soft target probabilities. This process leads to a form of model

regularisation, because the learning capacity is reduced whilst main-

taining similar generalisation results. This behaviour is corroborated

by experimental results on popular benchmark datasets in computer

vision.

1 Introduction

Many Ensemble methods have been proposed [5], but they all require

utilising the full group of trained classifiers at test-time. This can

be computationally very expensive, especially when those classifiers

come from Deep Learning.

Part of research work in Deep Leanring has been directed to-

wards reducing the amount of computation required to train Deep

networks [15, 9, 13]. However, at test-time, the computation required

can still be expensive, making the use of Deep Learning Ensembles

impractical in industrial and commercial applications.

It has been shown that it is possible, through a process called dis-

tillation, to train a smaller network to approximate the results of a

larger one without loss of generality [7].

It has also been shown that an Artificial Neural Network is able

to learn the distilled knowledge of an Ensemble, although this has

been done in the context of shallow, fully-connected feed-forward

ANNs [4].

In this paper, a new simplified recipe for the distillation of Deep

Learning Ensembles is presented, which allows for the creation of a

Deep Network that approximates and at the same time regularizes an

existing trained Ensemble of Deep Neworks. Such a Distilled model

is more portable than the original Ensemble, because it has a smaller

footprint, both in computational and memory requirements. It is also

1 Department of Computer Science and Information Systems, Birkbeck, Uni-
versity of London, email: {a.mosca, gmagoulas}@dcs.bbk.ac.uk

shown how this method of distillation can be interpreted as a regular-

isation technique, and that in most cases the distilled model is able to

improve on the generalisation of the Ensemble.

An experiment is described, in which several Deep Learning En-

sembles are distilled into single networks, on some well-known

benchmark datasets.

The paper is structured as follows. Section 2 reviews the existing

literature and research upon which this technique is based. Section 3

explains the process of distillation of Ensembles and how it can be

justified theoretically. Section 4 describes a practical experiment on

existing benchmark datasets in computer vision. Finally, Section 5

makes final remarks and explores possible future work.

2 Prior Work

The idea of using a small model to represent a larger one has been

previously explored in the field of simulation, where metamodels are

often utilised as a representation of a simulation which is cheaper

and faster to run. Many surveys exist on the subject of these meta-

models [16], and many of the metamodels that have been adopted

are Artificial Neural Networks [2, 6]. It has been shown that the

function approximated by an Ensemble can be compressed into a

smaller, faster model, by creating pseudo data in order to capture the

function of the Ensemble, so that the small model can be trained on

it [17, 4]. This however requires additional unlabelled data or, more

commonly, the creation of synthetic data, which requires knowledge

about the distribution of the original data. Whilst originally a random

sample from the feature space was proposed [17], the authors of the

model compression mechanism [4] have devised different ways of

estimating the original distribution (RANDOM, NBE, MUNGE) for

more accurate samples of the synthetic data. These are all approx-

imate methods for estimating the original distribution of the data,

which is unknown.

It has also been shown that a small network can approximate the

function of a much deeper network by learning the “soft target proba-

bilities” of the more cumbersome network [7]. The authors also pro-

pose a way to accelerate the training of a model on a large dataset

by using an Ensemble of specialists. However, they do not then try to

distil the Ensemble into a smaller model.

It is therefore noticed that there is no experimental work show-

ing how Deep Learning Ensembles can be effectively approximated

without having to resort to either additional synthetic training data, or

“tricks” to improve the efficiency of the transfer of learning between

models.

3 Distillation of Ensembles

A new method for distilling the knowledge from an Ensemble of

Deep Networks is hereby proposed which does not include the typi-

cal limitations of compressed models or distilled networks.
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The proposed approach does not make use of soft target proba-

bilities and does not create additional synthetic training data. This

recipe relies solely on the assumption that the original Ensemble is

likely to have overfit the training data. The soft target probabilities

are not used to provide a simplification to the procedure. We found

empirically that the difference was small enough to justify dropping

it.

By obtaining the labels produced by the Ensemble on the training

set Xtrain and using them to train a new classifier of the same type

and shape as those used as members of the Ensemble (Algorithm 1),

it is possible to construct a regularised version of the approximated

function f̄(X), which is learned by a model h(X).
The validation and testing of the model is performed on the orig-

inal validation and test sets. This ensures that the distilled model’s

learned function f̄ ′(X) is evaluated on how well it approximates

f(X)– the (unknown) function that correctly labels the data, which

is the target of the learning – rather than f̄(X), which was the origi-

nal goal of the learning process.

Algorithm 1 Regularized Distillation

hE(X,Y )← ensemble trained on Xtrain and labels Ytrain

yh(Xtrain)← hard target outputs of hE(Xtrain, Ytrain)
hD(X, yh(X))← classifier trained on Xtrain and labels yh(X)
evaluate hD(X, yh(X)) on the original validation and testing sets

(Xvalid, Yvalid) and (Xtest, Ytest)

Although in theory it is possible to utilise any architecture for the

distilled network, it is practical to re-use the same architecture ap-

plied as a base classifier. This avoids the need to fit additional hy-

perparameters and the architecture is already known to be suitable

to the problem. It also serves to demonstrate the point that improved

learning can be achieved with no additional capacity.

4 Experimental Analysis

This section demonstrates how the methodology has been applied

successfully to distil the knowledge learned by some Deep Learning

Ensembles. For all datasets, we tried Bagging [3] and AdaBoost [14],

with 3 members for each Ensemble, and then trained a distilled ver-

sion of the Ensemble according to the procedure described in Sec-

tion 3. Each experiment was repeated 5 times, and the mean misclas-

sification errors have been reported.

To accelerate the learning process, all the models were trained us-

ing Adam [9], with a schedule of 20 epochs with exponentially de-

caying learning rates. Dropout [8] was also used, as it is a common

regularization technique for Deep Networks. Training was limited

to 40 epochs per network to accelerate the iterative process. All the

Enembles have been trained in less than 8 hours each.

To ensure that the comparison was fair, the distilled network re-

ceived the same initialisation weights as all the Ensemble members.

Although this in general reduces the diversity of the Ensemble, in

this specific case it removed the doubt about whether the improved

performance could have been due to a more favourable random ini-

tialisation.

4.1 Datasets

A few benchmark datasets that are common to Deep Learning have

been used to evaluate the proposed methodology. No data augmenta-

tion has been performed on the datasets, apart from simple normal-

ization techniques. The networks have been kept intentionally rela-

tively small, compared to some exisiting state-of-the-art results, in

order to accelerate the iterative experimental process.

4.1.1 MNIST

MNIST [11] is a common computer vision dataset that associates

pre-processed images of hand-written numerical digits with a class

label representing that digit. The input features are the raw pixel val-

ues for the 28 × 28 images, in grayscale, and the outputs are the

numerical value between 0 and 9.

The Convolutional Neural Network–CNN used for MNIST has the

following structure:

• An input layer of 784 nodes

• 64 5× 5 convolutions

• 2× 2 max-pooling

• 128 5× 5 convolutions

• 2× 2 max-pooling

• A fully connected layer of 1024 nodes

• Dropout with P (D) = 0.5
• a Softmax layer with 10 outputs (one for each class)

4.1.2 CIFAR-10

CIFAR-10 is a dataset that contains 60000 small images of 10 cat-

egories of objects. It was first introduced in [10]. The images are

32 × 32 pixels, in RGB format. The output categories are airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, truck. The classes

are completely mutually exclusive so that it is translatable to a 1-vs-

all multiclass classification. Of the 60000 samples, there is a training

set of 40000 instances, a validation set of 10000 and a test set of

another 10000. All sets have perfect class balance.

The CNN used for CIFAR-10 has the following structure:

• An input layer of 3096 nodes

• 128 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 128 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 2× 2 max-pooling

• 256 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 256 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 2× 2 max-pooling

• A fully connected layer of 1024 nodes

• Dropout with P (D) = 0.5
• a Softmax layer with 10 outputs (one for each class)

Batch normalization is applied at all layers. This is a CNN that

can be trained quick enough to allow the creation of an Ensemble

and experiment iteratively, whilst still obtaining a good error rate.

4.1.3 CIFAR-100

CIFAR-100 is a dataset that contains 60000 small images of 100 cat-

egories of objects, grouped in 20 super-classes. It was first introduced

in [10]. The image format is the same as CIFAR-10. Class labels are

provided for the 100 classes as well as the 20 super-classes. A super-

class is a category that includes 5 of the fine-grained class labels

(e.g. “insects” contains bee, beetle, butterfly, caterpillar, cockroach).

Of the 60000 samples, there is a training set of 40000 instances, a
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validation set of 10000 and a test set of another 10000. All sets have

perfect class balance.

The CNN used for CIFAR-100 has the following structure:

• An input layer of 3096 nodes

• 128 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 128 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 2× 2 max-pooling

• 256 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 256 3× 3 convolutions, with 1× 1 padding

• Dropout with P (D) = 0.25
• 2× 2 max-pooling

• A fully connected layer of 1024 nodes

• Dropout with P (D) = 0.5
• a Softmax layer with 10 outputs (one for each class)

Batch normalization is applied at all layers. This is a CNN that

can be trained quick enough to allow the creation of an Ensemble

and experiment iteratively, whilst still obtaining a good error rate.

4.1.4 UCI Datasets

The original paper on model compression [4] uses a selection of

datasets from the UCI Machine Learning repository [1]. These

datasets are generally small and because the data includes features

that have already been transformed, they are best suited for networks

with a small number of fully-connected layers. We excluded some of

the dataset because they were far too small to evaluate using Deep

Learning methods. Table 1 shows the details for each of the datasets

used.

dataset train validation test features classes

adult 29303 3259 16283 14 2

covtype 464808 58101 58102 54 8

letters 16000 2000 2000 16 26

Table 1. UCI Dataset Characteristics

4.2 Results

Considering the misclassification on the test set of each of the exper-

imental datasets, it can be noted that the Distilled Ensemble is able

to generalise as well as the original Ensemble, and in some cases

even better. These small generalisation improvements have been at-

tributed to the fact that forcing a single network to learn the function

approximated by an Ensemble can serve as a form of regularisation.

4.2.1 MNIST

Table 2 shows the results on the MNIST dataset. AdaBoost seems to

perform worse than bagging, presumably because the added empha-

sis on the “hard-to-classify” examples heavily imbalances the train-

ing sets, given that so few examples are misclassified in the first

place. However, even with such a simple network it is possible to im-

prove on the Ensemble’s results with the regularization provided by

AdaBoost Bagging

Ensemble 0.63% 0.59%
Distilled 0.52% 0.55%

Table 2. Test misclassification error on MNIST
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Figure 1. Test misclassification rate - MNIST

the distillation process, reaching a very small error level that is com-

parable to some much more complex models (e.g. Network in Net-

work [12]), when no dataset augmentation is performed. For compar-

ison, the test misclassification rate for the single network, trained on

a random resample of the original training set with the same training

schedule, is 0.66%. A random resample is used, because both Bag-

ging and AdaBoost perform random resamples of the training set for

each round, which inevitably creates an imbalance in the class label

distribution, making the learning process harder.

Figure 1 shows how the distilled network learns the original func-

tion f(X) for the MNIST dataset faster than the single original net-

work, despite being trained on the approximated function f̄(X), re-

inforcing our argument that our method provides regularisation to the

model.

4.2.2 CIFAR-10

AdaBoost Bagging

Ensemble 24.61% 22.30%
Distilled 24.05% 23.65%

Table 3. Test misclassification error on CIFAR-10

Table 3 shows the results on the CIFAR-10 dataset. For compari-

son, the test misclassification rate for the single network, trained on a

random resample of the the original training set with the same train-

ing schedule, is 26.77%. As with MNIST, the Distilled network is

able to generalise slightly better than the single network, receiving

well the information learned by the Ensemble, with no additional

synthetic data or learning capacity.
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Figure 2. Test misclassification rate - CIFAR-10

However, in the case of Bagging, the distilled network performed

slightly worse than the original Ensemble. This is attributed to the

fact that, having used a bag of 3 CNNs, it is plausible that the Ensem-

ble hasn’t overfit the training data yet, and that therefore the distilla-

tion process only reduced the learning capacity without regularizing.

However, there are still advantages in using the distilled network: it

provides a better estimator than the original single network, it runs

faster than the Ensemble, and is a much smaller model than the En-

semble.

Figure 2 also shows how the distilled network learns the origi-

nal function f(X) of the CIFAR-10 dataset faster than the single

original network, despite being trained on an approximated function

f̄(X), supporting our argument that the proposed method provides

regularisation to the model.

4.2.3 CIFAR-100

AdaBoost Bagging

Ensemble 58.41% 57.69%
Distilled 57.85% 58.66%

Table 4. Test misclassification error on CIFAR-100

Table 4 shows the results on the CIFAR-100 dataset. The test mis-

classification rate for the single network, trained on a random resam-

ple of the the original training set with the same schedule, is 63.29%.

The same observations that were made for CIFAR-10 with regards

to the distilled Ensemble not beating the original Ensemble because

the model is not overfitting also apply to this experiment.

Figure 3 also shows how the distilled network learns the original

function f(X) faster than the single original network, despite being

trained on f̄(X), reinforcing our argument that our method provides

regularisation to the model.

4.2.4 UCI Datasets

Table 5 shows the results on the UCI datasets. For these experiments

we only used Bagging as the Ensemble method. We can see that even
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ensemble distilled single

adult 24.06% 24.06% 24.09%
covtype 16.47% 18.66% 19.51%
letters 4.17% 5.90% 4.70%

Table 5. UCI Dataset Results - Bagging only

on these small datasets the distilled network mostly performs better

than the single network, but given the much smaller size of the base

learners, the reduction in learning capacity provided by the distilled

network is too strong, and the regularization effect disappears be-

cause the distilled network is not able to completely learn f̄(X).
This was verified by running variants that had much larger distilled

networks than the base classifier of the Ensemble, and it was found

that the distilled network again was able to improve the learning of

the Ensemble in most cases.

5 Concluding Remarks

In this paper we have shown that it is possible to use a single network

to approximate a Deep Learning Ensemble of networks of the same

shape, and that the process of distillation can be used as a regulariser

to reduce the overfitting of a model, and improve its generalisation.

This method does not require additional synthetic training data and

does not utilise the soft target probabilities from the Ensemble for

training of the distilled network.

An experiment on three well-known datasets in the computer vi-

sion domain has been described, with results that corroborate the

claims of the method. This experiment could be extended by utilising

state-of-the-art Deep Learning models with the best known perfor-

mance on the benchmark datasets. Due to very long times required

to train these state-of-the-art models, it is however impractical to per-

form iterative experiment on such an Ensemble, unless one has vast

resources at their disposal. Moreover, the state-of-the-art results on

CIFAR-10 and CIFAR-100 have been achieved by using a training

set of 50000 examples, obtained by utilising the hold-out validation

set as training data. The hold-out validation set is also utilised to

perform selection in the Ensemble, so as to avoid selecting an over-

fitted base classifier. The error obtained by the base classifier would
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therefore be larger, due to the lack of the 10000 additional training

examples.

In the future, this work can be extended by studying how to gener-

ate a Distilled Ensemble whilst training the original Ensemble, there-

fore creating an on-the-fly distillation process, which would eliminate

the requirement for saving and running the entire Ensemble solely

wiht the intent to create the distillation training set.

REFERENCES

[1] K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.
[2] Adedeji B Badiru and David B Sieger, ‘Neural network as a simulation

metamodel in economic analysis of risky projects’, European Journal

of Operational Research, 105(1), 130–142, (1998).
[3] L. Breiman, ‘Bagging predictors’, Machine Learning, 24(2), 123–140,

(1996).
[4] Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil, ‘Model

compression’, in Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 535–541.
ACM, (2006).

[5] Thomas Dietterich, ‘Ensemble methods in machine learning’, in Mul-

tiple Classifier Systems, volume 1857 of Lecture Notes in Computer

Science, 1–15, Springer Berlin / Heidelberg, (2000).
[6] DJ Fonseca, DO Navaresse, and GP Moynihan, ‘Simulation metamod-

eling through artificial neural networks’, Engineering Applications of

Artificial Intelligence, 16(3), 177–183, (2003).
[7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, ‘Distilling the knowl-

edge in a neural network’, arXiv preprint arXiv:1503.02531, (2015).
[8] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov, ‘Improving neural networks by preventing
co-adaptation of feature detectors’, arXiv preprint, (2012).

[9] Diederik Kingma and Jimmy Ba, ‘Adam: A method for stochastic opti-
mization’, arXiv preprint arXiv:1412.6980, (2014).

[10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images, 2009.

[11] Yann Lecun and Corinna Cortes, ‘The MNIST database of handwritten
digits’.

[12] Min Lin, Qiang Chen, and Shuicheng Yan, ‘Network in network’, arXiv

preprint arXiv:1312.4400, (2013).
[13] Alan Mosca and George D Magoulas, ‘Adapting resilient propaga-

tion for deep learning’, UK Workshop on Computational Intelligence,
(2015).

[14] R. E. Schapire, ‘The strength of weak learnability’, Machine Learning,
5, 197–227, (1990).

[15] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning, 2012.

[16] G Gary Wang and Songqing Shan, ‘Review of metamodeling tech-
niques in support of engineering design optimization’, Journal of Me-

chanical design, 129(4), 370–380, (2007).
[17] Xinchuan Zeng and Tony R. Martinez, ‘Using a neural network to ap-

proximate an ensemble of classifiers’, Neural Processing Letters, 12(3),
225–237, (2000).

57



58



Hybrid Approaches to Determine Existence of Emotions in 
Facial Gestures 

Isidoros Perikos
1
 and Epaminondas Ziakopoulos

1
 and Ioannis Hatzilygeroudis

1
 

 

 

Abstract.1  Facial gestures constitute meaningful aspects of human 
behaviour and can express a wide range of emotional states and 
feelings. In this work, we present a neuro-fuzzy and a neuro-
symbolic approach and examine their performance in specifying 
the existence of emotions in facial expressions. Due to the 
domain’s high complexity and dimensionality, hybrid neural 
approaches seem to be quite suitable to be utilized and this work is 
a contribution towards examining this direction. Initially, a new 
given photo is analyzed and faces in the photo are detected using 
the Viola-Jones algorithm. Then, each face is analyzed separately 
and specific regions of the facial expression such as eyes, eyebrows 
and mouth, are analyzed and proper geometrical characteristics 
form each region are extracted. Extracted features represent the 
deformation of the facial expression and based on them two 
approaches, a neuro fuzzy inference approach and a neuro 
symbolic approach that utilizes neurules, are trained and used to 
specify the existence of emotions. An evaluation study was 
conducted on JAFFE and Cohn Kanade databases and revealed 
very promising results. 

1 INTRODUCTION 

The aim of facial expression recognition is to enable machines 

to automatically estimate the emotional content of a human face. 

Facial expressions form a universal language of emotions, which 

can instantly express a wide range of human emotional states and 

feelings. Since facial expressions assist in various cognitive tasks, 

reading and interpreting the emotional content of human 

expressions is essential to deeper understand human condition. In 

an early work on human facial emotions [14] it has been indicated 

that during a face-to-face human communication only 7% of the 

information of a message is communicated by the linguistic part of 

the message, such as spoken words, 38% is communicated by 

paralanguage (vocal part) and 55% is communicated by the facial 

expressions. So, the facial expressions constitute the most 

important communication medium in face-to-face interaction. 

 Giving to computer applications the ability to recognize the 

emotional state of humans from their facial expressions is a very 

important and challenging task with wide ranging applications. In 

general, affective computing systems need to perceive emotional 

reactions by the user and successfully incorporate this information 

into the interaction process [10]. The interaction between human 

and computer systems (HCI) would become much more natural 

and vivid if the computer applications could recognize and adapt to 

the emotional state of the human. Indeed, automated systems that 
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can determine emotions of a human based on his/her facial 

expressions can improve the human computer interaction and give 

computer systems the opportunity to customize and adapt its 

response [4]. Embodied conversational agents can greatly benefit 

from spotting and understanding the emotional states of the 

participants, achieving more realistic interactions at an emotional 

level [11]. In intelligent tutoring systems, emotions and learning 

are inextricably bound together; so, recognizing the learner’s 

emotional states could significantly improve the efficiency of the 

learning procedures delivered to him/her [1] [19]. Moreover, 

surveillance applications such as driver monitoring and elderly 

monitoring systems could benefit from a facial emotion recognition 

system, gaining the ability to deeper understand and adapt to the 

person’s cognitive and emotional condition. Also, facial emotion 

recognition could be applied to medical treatment to monitor 

patients and detect their status. However, the analysis of the human 

face characteristics and the recognition of its emotional state are 

considered to be very challenging and difficult tasks. The main 

difficulty comes from the non-uniform nature of the human face 

and various limitations such as lightening, shadows, facial pose and 

orientation conditions [9]. 

In this work, we present two approaches to determine the 

emotional state of human facial expressions. Initially, facial 

expressions are analyzed and proper features are measured and 

extracted following an analytical, local-based approach. Given a 

new image, Viola-Jones algorithm is utilized to detect human faces 

in images [22]. Then, it locates and measures facial deformations 

of specific regions such as eyes, eyebrows and mouth and extracts 

geometrical characteristics such as locations, length, width and 

shape. The extracted features represent the deformations of the 

facial expression and based on them two classification approaches 

a neuro fuzzy and a neurule one are trained and are used to 

recognize whether a facial gesture conveys emotional content or it 

is neutral. The evaluation study was conducted on JAFFE and 

Cohn Kanade databases and revealed very encouraging results 

regarding the performance of the two approaches in determining 

whether a facial expression is neutral or conveys emotional 

content. 

The rest of the paper is structured as follows: Section 2 presents 

related literature. Section 3 presents our work on facial emotion 

recognition and illustrates the functionality of the neuro fuzzy and 

the neuro-symbolic approaches. Section 4 presents the evaluation 

study conducted and the performance results of the approaches. 

Finally, Section 5 concludes the paper and provides directions that 

future work will examine 
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2 RELATED WORKS 

In the literature there are a lot of research efforts on facial image 

analysis and emotion recognition [3] [21] [24]. Although a human 

can detect and interpret faces and facial expressions naturally with 

little or no effort, accurate facial expression recognition by 

machines is still a challenge. Authors, in the work presented in [2], 

present a method for emotional classification of facial expressions, 

which is based on histogram sequence of feature vector. The 

system is able to recognize five human expression categories: 

happy, anger, sad, surprise and neutral, based on the geometrical 

characteristics of the human mouth with an average recognition 

accuracy of 81.6%. The work presented in [20] recognizes facial 

emotions based on a novel approach using Canny, principal 

component analysis (PCA) technique for local facial feature 

extraction and an artificial neural network for the classification 

process. The average facial expression classification accuracy of 

the method is reported to be 85.7%. The authors in the work 

presented in [18], recognize four basic emotions: happiness, anger, 

surprise and sadness, focusing in preprocessing techniques for 

feature extraction such as, Gabor filters, linear discrimination 

analysis and PCA. They achieve in their experiments 93.8% 

average accuracy for images of the Jaffe face database with little 

noise and with particularly exaggerated expressions and an average 

accuracy of 79% in recognition of just smiling/non smiling 

expressions in the ORL database. In [15], authors use a SVM 

classifier to recognize the 6 basis emotions defined by [5] in Cohn-

Kanade database. In the study, authors extract 22 features from 

facial still images and report an average accuracy of 87.9%. In 

[12], authors recognize the six basic Ekman’s emotions in elders’ 

facial expressions using a SVM classifier. Features are extracted 

for expressions based on the active shape model, which fits in the 

shape parameters, using techniques such as gradient descent. The 

SVM is trained on a dataset such as, JAFFE in Cohn-Kanade and 

MII, and authors report promising results. In [23], authors 

developed a system for the emotion classification through lower 

facial expressions using the adaptive SVM. The system extracts 

eight feature points from the mouth, chin and nose and feed them 

into the A-SVMs classifier to categorize expression. The system 

was tested on Jaffe database and reports an average accuracy of 

74.5%.  

3 EMOTION RECOGNITION 
APPROACHES 

In general, the task of the recognition of emotions from facial 

expressions can be divided in three main stages. These stages are 

the detection and recognition of a face so that a face in an image is 

known for further processing, the analysis and the extraction of 

facial features which concerns the method used to represent the 

facial expressions and finally the classification stage which 

classifies the features extracted from a facial expression in the 

proper emotional category [9].  

 In the context of our work, initially, a given new image is 

analyzed and human faces that may appear in it are detected using 

the Viola-Jones method [22]. Then, each face is isolated analyzed, 

appropriate features are extracted and the based on them the 

expression is classifies it to the proper emotional or neutral 

category. When a face is detected in the image, the area of the face 

is located and is further analyzed. Initially, the facial area is 

normalized and the contrast is enhanced and after that, specific 

regions which contribute in recognizing the emotional content of 

the facial expression are specified. The specific regions, from 

which the proper features are extracted, are named Areas of 

Interest (AOIs) and are the region of the eyes, the area of the 

mouth and the eyebrows. The feature extraction process analyzes 

the AOIs and tries to extract proper facial features, which describe 

and model the characteristics of the facial region. Our methodology 

follows an analytical local-based approach and so the feature 

extraction is implemented in the specific AOIs of the face. The 

stages of the methodology’s workflow are illustrated in Figure 1 on 

an example photo. 

 

Figure 1. The stages of the analysis of a facial image. 

The results of the analysis concern the extraction of the proper 

features and the formulation of the information vector that 

represents the characteristics of the facial gesture. In Figure 2, the 

expression representation and the features extracted from each AOI 

are illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Expression Representation and Features Extracted from each 

AOI. 

 

Left eyebrow 

 H1: The height of the far left part. 

 H2: The height of the part found on the 1/3 of the 

distance between the far left part and far right part. 

 H3: The height of the part found on the 2/3 of the 
distance between the far left and far right part. 

 H4: The height of the far right. 

 L1: The length of the eyebrow. 

Right eyebrow 

 H5: The height of the far left part. 

 H6: The height of the part found on the 1/3 of the 

distance between the far left and far right part. 
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 H7: The height of the part found on the 2/3 of the 

distance between the far left and far right part. 

 H8: The height of the far right part. 

 L2: The length of the eyebrow. 

Left eye 

 H9: The height of the far left part. 

 H10: The height of the far right part. 

 W1: The width of the eye.  

Right eye 

 H11: The height of the far left part. 

 H12: The height of the far right part. 

 W2: The width of the eye.  

Mouth 

 H13: The height of the far left part of the mouth. 

 H14: The height of the part found on the 1/2 of the 

distance between the far left and far right part of the 
mouth. 

 H15: The height of the far left part of the mouth. 

 W3: The width of the mouth. 

 L3: The length of the mouth. 

Relative Values 

 R1: The average height of the eyebrows.  

 R2: The horizontal distance between the eyebrows. 

 R3: The vertical distance between the eyebrows and the 
bottom of the mouth. 

 R4: The ratio of the mouth length to the mouth width. 

 

The features extracted from each facial expression are used to 

represent the characteristics of the expressions. Based on them we 

train and examine the performance of a neuro fuzzy and a neuro 

symbolic classification approach which relies on neurules are used 

to specify whether the facial gestures convey emotions or are 

neutral. 

 

3.1 Neuro-Fuzzy and Neurule Classification 
Approaches 

The complexity of the facial emotion recognition requires a 

different approach to solve other than standard hard computing.  

Using hard computing such as neural networks or other 

probabilistic classifiers, a high performance is achievable. 

However, soft computing approaches are more fitting, more 

intuitive and overall have the potential to yield better results for 

certain classification problems. In addition, they can face over 

fitting problems without any loss of generality. In the context of 

our study, we explore the performance of a neuro fuzzy and a 

neurule classification approach. 

3.1.1 Neuro Fuzzy Inference System  

The Fuzzy Inference System structure used to classify the human 

emotion is a typical example of soft computing classification. A 

basic idea underlying fuzzy logic is that notions or concepts are 

generally preferred over numbers, since numbers are very hard to 

be intuitively understood by human intelligence. Also fuzzy logic 

utilizes fuzzy if/then rules. Decision making should be able to 

tolerate uncertainty and inconsistency in order to bring forth the 

real world significance of the situation.  

 The Takagi-Sugeno-Kang method of fuzzy inference is used in 

this classification problem and consists of five steps. The first step 

is to fuzzify the inputs. The idea is to turn a fixed input number 

into a relevant value based on a linguistic set. In other words the 

output is a fuzzy degree of membership in the qualifying linguistic 

set. After the inputs are fuzzified a fuzzy operator is applied to 

obtain a single truth value if the fuzzified input variables have 

more than one membership values. Then an implication method is 

applied. The implication method results in a fuzzy set represented 

by a membership function. The consequent is then reshaped using a 

function associated with the antecedent. Finally the outputs are 

aggregated and defuzzified. 

For the utilization of the neuro fuzzy system Matlab toolbox 

was utilized. For the training phase, the dataset of the facial 

expressions is divided into two subsets. The first subset contains 

65% of the facial dataset and the second the remaining 35%. The 

first is used to create the fuzzy inference system and the second to 

evaluate it. The system is generated using subtractive clustering. 

Subtractive clustering is a fast, efficient algorithm for estimating 

the number of clusters and the clusters in a dataset. A custom 

vector that specifies the clusters center's range of influence in each 

of the data dimensions is required to achieve a very high 

performance for the system. The cluster estimates obtained from 

the subclust function can be used to model identification methods. 

In this case the subclust function is used to generate the Takagi-

Sugeno-Kang fuzzy inference system trained to classify the input 

values.  

3.1.2 Neurules 

Neurules (Neural rules) are a kind of hybrid rules. Each neurule 

(Fig. 3a) is considered as an adaline unit (Fig.3b). The inputs Ci (i 

=1, ... , n ) of the unit are the conditions of the rule. Each condition 

Ci is assigned a number sfi, called a significance factor, 

corresponding to the weight of the corresponding input of the 

adaline unit. Moreover, each rule itself is assigned a number sf0, 

called the bias factor, corresponding to the bias of the unit. Each 

input takes a value from the following set of discrete values: [1 

(true), -1 (false), 0 (unknown)]. The output D, which represents the 

conclusion (decision) of the rule, is calculated via the formulas: 

 

 

 

 

 

where a is the activation value and f(x) the activation function, a 

threshold function: 

 

 

 

 

Hence, the output can take one of two values, ‘-1’ and ‘1’, 

representing failure and success of the rule respectively. 
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Figure  3. (a) Neurule as an adaline unit (b) Activation function (c) 

Neurule textual form. 

 

The textual form of a neurule is presented in Fig.3c. Cis are the 

conditions and D represents the conclusion (decision) of the rule. 

The significance factor sfi of a condition represents the significance 

(weight) of the condition in drawing the conclusion. 

 Neurules can be produced from empirical data through a well-

defined process [6]. The produced neurules constitute an integrated 

rule base, which can be used for making inferences [6] and even 

produce explanations [7], through a well-defined inference process 

[6]. 

 

4 EXPERIMENTAL STUDY 

The methodology and the system developed were extensively 

evaluated on facial images from two popular and widely used 

databases, the Japanese Female Facial Expression Database 

(JAFFE) [13] and the Cohn-Kanade database [8]. The Jaffe 

database consists of 213 facial pictures of 10 different posers. 

Approximately the two thirds (140 images) of the images of the 

database were selected to be part of the training dataset and the 

remaining 71 images were part of the test dataset. The Cohn-

Kanade is a popular database which includes 486 sequences from 

97 posers. 

4.1 Subsection 

After the facial images are analyzed and the features of each image 

are extracted, a dataset was formulated where each row includes 

values of the facial features of the expression and the 

corresponding emotion. For the needs of the study, the two thirds 

of the dataset were used for training, i.e. for producing the models 

of the two approaches, and the remaining one third of the dataset 

was used for the evaluation of the models. Given that we have a 

binary classification, we use the following four metrics: accuracy, 

precision, specificity and sensitivity, which are calculated as 

follows: 
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   ,  

where TP is the number of valid cases correctly classified, FP is the 
number of invalid cases that are misclassified, TN is the number of 
invalid cases correctly classified and FN is the number of valid 
cases that are misclassified.  

 The performance results of the neuro-fuzzy approach and the 
neurules approach are presented in Table 1 and Table 2 respectively. 

Table 1. Neuro Fuzzy Performance Results 

Metric Jaffe Cohn Kanade Total 

Accuracy 95.9 98.6 97.2 

Precision 81.2 90.9 86.3 

Sensitivity 96.8 100 98.4 

Specificity 90.0 98.3 94.2 

 

The evaluation results indicate that the neuro fuzzy approach is 

performing very well in both databases. The results indicate that 

the mechanism has a very good performance in determining 

whether a generated facial expression conveys emotions or not. 

The high sensitivity indicates that the mechanism can accurately 

identify emotional gestures that indeed are emotional. In Table 2, 

the performance of the neurules is illustrated. 

Table 2. Neurules performance Results 

Metric Jaffe Cohn Kanade Total 

Accuracy 85.2 87.1 86.2 

Precision 79.3 80.0 79.7 

Sensitivity 86.8 89.1 88.0 

Specificity 84.0 83.3 83.7 

 

The results of the study show that both models report very good 

performance. The best performance is achieved by the neuro-fuzzy 

model, for which accuracy and precision are better than those of 

the neurule approach in the experimental study. Regarding the 

neuro fuzzy approach, it performs better on both databases than the 

neurule approach. From a dataset scope, both methods report better 

performance in separating emotional from neutral facial expression 

in the Cohn Kanade database. We believe that this is mainly due to 

the fact that Cohn Kanade models present neutral expressions in a 

very consistent and inactive way. A noticeable point of both 

approaches on the two databases is that their high sensitivity 

indicates that the mechanism can accurately identify emotional 

facial expressions that indeed are emotional. 

5 CONCLUSIONS 

In this paper, we present two approaches, a neuro fuzzy and a 

neuro-symbolic one, that recognize whether a facial gesture 

expresses emotional content or not, and a performance on various 

facial expressions from databases. Initially, faces in images are 

detected via Viola Jones algorithm and after that, each facial 

expression is analyzed and proper features are measured and 

extracted following an analytical, local-based approach. Facial 

deformations of specific regions such as eyes, eyebrows and mouth 

62



are deep analyzed and geometrical characteristics are extracted. 

The extracted features represent the deformations of the facial 

expression and based on them two classification approaches a 

neuro fuzzy and a neurule one are trained and are used to recognize 

expressions emotional content. The experimental study conducted 

on JAFFE and Cohn-Kanade face databases indicated quite 

promising performance and confirm the quality of performance of 

the identifications.  

 There are some points that the future work can focus on. 

Initially, a bigger scale evaluation on additional facial expression 

databases such as the ORL will give a deeper insight of the 

approaches performance. Moreover, currently the face analysis and 

the determination of the AOIs work on still frontal images of 

human face and so, a challenging extension will be to detect and 

analyse facial expressions from different poses. Furthermore, the 

future work will also examine ensemble classification schemas that 

combine base classifiers under different ensemble approaches. 

Exploring this direction is a key aspect of our future work. 
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Extraction of Drug-Drug Interactions
by Recursive Matrix-Vector Spaces

Vı́ctor Suárez-Paniagua and Isabel Segura-Bedmar 1

Abstract. The purpose of this paper is to explore in detail how a
Recursive Neural Network (RNN) can be applied to classify drug-
drug interactions from biomedical texts. The system is based on
MV-RNN, a Matrix-Vector Recursive Neural Network built from the
Stanford constituency trees of sentences. Drug-drug interactions are
usually described by long sentences with complex structures (such as
subordinate clauses, oppositions, and coordinate structures, among
others). Our experiments show a low performance that may be prob-
ably due to the parser not being able to capture the structural com-
plexity of sentences in the biomedical literature. This paper describes
an extension of our previous work that has been accepted as a short
paper at ECAI 2016.

1 INTRODUCTION

Nowadays there is a growing concern about drug adverse events
(ADEs) since they are a serious risk for patient safety [4] as well
as a cause of rising health care costs [33]. Drug–drug interactions
(DDIs), a subset of ADE, are harms caused by the alteration of the
effects of a drug due to recent or simultaneous use of one or more
other drugs. Unfortunately, most DDIs are not detected during clin-
ical trials, mainly because these trials are designed to assess the ef-
fectiveness of drugs rather than their safety [30].

The management of DDIs is a critical issue due to the overwhelm-
ing amount of information available on them [13]. The introduction
of new technologies in primary care and hospitals has led to the de-
velopment of electronic medical record systems, which has opened
the possibility of incorporating decision support systems to prevent
drug-drug interactions and inform on possible actions to take. How-
ever, the deployment of these systems is not widespread yet [22]
and most systems in primary care do not support the management of
DDIs. Therefore, clinicians and pharmacists must be able to manage
by themselves the richness of information available on DDIs. There
is a great amount of DDI databases [22]. Some of them are Stock-
ley [29], Drug Interactions Facts [32], Medinteract, SEFH guide2,
Medscape3, Hansten, Micromedex4. The diversity of DDI databases
currently available poses a significant problem to health care profes-
sionals when collecting and evaluating information about a particular
interaction from these databases.

In addition, several studies [18, 9] have shown that the quality of
the DDI databases is very uneven and the consistency of their content
is scarce, so it is very difficult to assign a real clinical significance to

1 Computer Science Department, University Carlos III of Madrid, email: vs-
paniag,isegura@inf.uc3m.es

2 www.sefh.es
3 http://www.medscape.com/druginfo/druginterchecker
4 http://www.micromedex.com/products/drugreax/

each drug interaction. Ideally, prescribing information about a drug
should list its potential interactions, together with the following in-
formation about each interaction: its mechanism, its relation to the
doses of both drugs, its time course, the factors that alter an individ-
ual’s susceptibility to it, its seriousness and severity, and the proba-
bility of its occurrence [10, 2]. In practice, however, this information
is rarely available [3]. A set of criteria to evaluate and compare 24
databases was proposed in [22]. The minimum quality criteria in-
cludes levels of severity and evidence, bibliographic reference, and
the description of clinical management for each drug interaction.
This study concluded that only 9 databases satisfied the minimum
criteria. In particular, an increasingly important issue is the update
periods of these databases. The update period is described only in 12
of the 24 databases, from immediate updates to a period of 3 years.
Updates over 1 year should be inadmissible, and even more frequent
updates should be required.

On the other hand, despite the availability of these databases, a
great amount of the most current and valuable information is un-
structured, written in natural language and hidden in published ar-
ticles, scientific journals, books and technical reports. Drug interac-
tions are bread and butter to journals of clinical pharmacology due
to the vast number of interactions that can happen [3]. The number
of articles published in the biomedical domain is increasing between
10,000 and 20,000 articles per week 5. Each year 300,000 articles
are published just within the pharmacology domain [7]. Therefore,
the medical literature is probably by far the most effective system for
detection of DDIs [3].

Physicians have to spend a long time reviewing DDI databases as
well as the pharmacovigilance literature in order to assess the real
clinical significance of a particular DDI and to prevent harmful drug
interactions. The great amount of DDI databases and the deluge of
published research have overwhelmed most health care profession-
als because it is not possible to be kept up-to-date of everything
published about drug-drug interactions. Information extraction (IE),
from both structured and unstructured data sources can be of great
benefit in the pharmaceutical industry allowing identification and ex-
traction of relevant information and providing an interesting way of
reducing the time spent by health care professionals on reviewing the
literature. Therefore, the development of tools for automatically ex-
tracting DDIs from biomedical texts is essential for improving and
updating the drug knowledge databases.

In recent years, several NLP challenges have been organized to
promote the development of NLP techniques applied to the biomed-
ical domain, in particular, to the pharmacovigilance subject. In par-
ticular, the DDIExtraction shared tasks [24, 25] have been conceived
with a dual objective: advancing the state-of-the-art of text-mining

5 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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techniques applied to the pharmacological domain, and providing a
common framework for evaluation of the participating systems and
other researchers interested in the task. While the first edition in 2011
only addressed the detection of drug DDIs from biomedical texts, the
second edition also included their classification. Each DDI is classi-
fied with one of the following types of DDIs: mechanism (when the
DDI is described by their pharmacokinetic mechanism), effect (for
DDIs describing an effect or a pharmacodynamic mechanism), ad-
vice (when sentence is providing a recommendation or advice about
a DDI) and int (the DDI appears in the text without providing any
additional information). Most of the participating systems as well as
the systems developed later have been based on Support Vector Ma-
chines (SVM) and on both linear and non-linear kernels, being the
state-of-the-art performance of 77.5% F-score for detection and 67%
F-score for classification [16]. All of them are characterized by the
use of large and rich sets of linguistic features proposed by text min-
ers and domain experts.

The prominent use of Deep Learning in Natural Language Pro-
cessing and its good performance on this field makes it a promis-
ing technique in Relation Extraction, such as, Convolutional Neural
Network (CNN) [35] or Recurrent Neural Network [34]. Recursive
Neural Network (RNN) is a Deep Learning architecture, which is
created from the parsing tree, that captures the semantic meaning for
phrases and sentences. Specially, RNN used in Matrix-Vector spaces
(MV-RNN) was the first Deep Learning architecture that obtained
improvements in Relation Extraction [28]. This model introduces a
RNN that captures the compositional6 vector representation of long
phrases or sentences. To this end, the model assigns a vector and a
matrix to every word and it learns a compositional function for com-
puting these representations.

Deep learning methods can be an interesting alternative to the clas-
sical methods since they are able to learn the best features to repre-
sent a problem. To the best of our knowledge, only two works so
far have used Deep Learning methods for the classification of DDIs
from biomedical texts. The first work exploited a RNN [8], achieving
68.64% F-measure for DDI classification, however the performance
for each DDI type was not studied. The second one was based on the
use of a CNN presented in [27]. The goal of our work is to continue
the work started by [8], performing a detailed study about if RNNs
are able to correctly classify the different DDI types. The main ad-
vantage of this approach over other Deep Learning architectures is
that captures the semantic information in the whole sentence and in
each word through the matrix and the vector, respectively. In this pa-
per, we explore the use of MV-RNN applied to the DDI classification
task. This paper describes an extension of our previous work that has
been accepted as a short paper at ECAI 2016 [31].

The paper is organized as follows: Section 2 shows the state-of-
the-art systems in DDI focusing on Deep Learning architectures.
Section 3 describes the dataset and the methodology used for the
extraction of DDIs. The experiments of this work are showed and
discussed in Section 4. Finally, Section 5 presents the principal con-
clusions extracted from results obtained as well as proposals for fu-
tures works.

2 RELATED WORK

The DDIExtraction 2013 was the following edition of a first event
organized in 2011, DDIExtraction Shared Task 2011 [24] whose

6 The compositionality is the important quality of natural language that de-
termines the meaning of its words and the rules used to combine them [11]

main goal was the detection of drug-drug interactions from biomed-
ical texts. The DDIExtraction 2013 task relies on the DDI corpus7,
which is a semantically annotated corpus of documents describing
drug-drug interactions from the DrugBank database and MedLine
abstracts on the subject of drug-drug interactions.

The highest performance presented in DDIExtraction Shared Task
2013 was Fondazione Bruno Kessler team (FBK-irst) [5]. The sys-
tem consisted of two-phase DDI extraction framework: the DDIs
were detected first and then, the extracted DDIs were classified ac-
cording to the proposed types (mechanism, effect, advice and int)
in the guidelines task. In the DDI detection phase, filtering tech-
niques based on the scope of negation cues and the semantic roles
of the entities involved were proposed to rule out possible negative
instances from the test dataset. In particular, a binary SVM classifier
was trained using contextual and shallow linguistic features to find
these sentences which were not considered in the relation extrac-
tion phase. Once these negative instances were discarded from the
test dataset, a hybrid kernel (combining a feature-based kernel, the
shallow linguistic kernel (SL) [12] and the Path-enclosed Tree (PET)
kernel [20]) was used to train a RE classifier. For the classification
of the extracted DDIs, four separate SVM models were trained for
each DDI type (using ONE-vs-ALL). The trained models were ap-
plied only on the extracted DDIs (by the DDI detection module) from
the test dataset. Experiments on the training dataset showed that the
filtering techniques improve both precision and recall with respect to
applying only the hybrid kernel. They obtained 65.1% in F-measure.
Table 1 shows the ranking information in the classification subtask.

DDI-DrugBank DDI-MedLine Total
EFFECT 0.664 0.407 0.628
MECHANISM 0.705 0.383 0.679
ADVICE 0.705 0.286 0.692
INT 0.545 0.571 0.547
TOTAL 0.676 0.398 0.651

Table 1. FBK-irst [5] F1-scores for DDIExtraction Shared Task 2013.

Afterwards, the work of [16] overcomes this top ranking system
using a rich set of lexical and syntactic features, such as word fea-
tures, word pair features, dependency parse features, parse tree fea-
tures and noun phrase-constrained coordination features to indicate
if the target drugs are coordinated in a noun phrase. To ensure gener-
alization of these features, target drug mentions and the rest of drugs
in the sentence are anonymized. Moreover, numbers and tokens con-
tained in the sentences are replaced by a generic tag and normalized
into lemmas, respectively. They also removed interactions with the
same drug name and drug mentions on the left of the colon that are
detailed description of their interactions with other drugs. The sys-
tem consisted of two separate steps: first a DDI detector is built to
extract interacting drug pairs from all candidate interactions and sec-
ond, a DDI type classifier is then trained to classify the interacting
pairs into predefined relation categories. They reach 67% F-score for
the classification task (see Table 2).

Beyond these machine learning approaches, MV-RNN ob-
tained improvements in classification of semantic relationship with
SemEval-2010 Task 8 [14] dataset. This approach generates a Neural
Network from a binarized constituency parse tree of each sentence,
learns the meaning of each constituent (a word of the sentence), and
7 http://labda.inf.uc3m.es/DDIcorpus
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DDI-DrugBank DDI-MedLine Total
EFFECT 0.706 0.352 0.662
MECHANISM 0.714 0.455 0.693
ADVICE 0.736 0.429 0.725
INT 0.497 0.250 0.483
TOTAL 0.698 0.382 0.670

Table 2. Kim et al [16] F1-scores for DDIExtraction Shared Task 2013.

captures how this constituent changes the meaning of their neigh-
bors through matrix-vector spaces.This system was the starting point
in Relation Extraction via Deep Learning.

Following the MV-RNN approach, the work of [8] demonstrates
that using dependency parse instead of constituency parse in a recur-
sive neural network (RNN) model improves the performance and the
training time for the task of relation classification. They use a modi-
fication of a RNN (C-RNN) to incorporate dependency graph nodes
where each dependent between entities has a unique common an-
cestor. In addition, they add some internal features: the depth of the
tree, distance between entities, context words and the type of depen-
dencies. They evaluate in the SemEval-2013 Task 9.b where C-RNN
obtains a 68.64% in F-measure. To the best of our knowledge, only
this work use RNN for the DDI task, but they only report results in
the overall dataset.

Recently, the work [27] demonstrates that a Deep Learning archi-
tecture, as Convolution Neural Network, can outperform the rest of
machine learning techniques only using the word embeddings and
position embeddings. Currently, this approach is the state-of-the-art
system in DDI Extraction which obtained 69.75% in the subtask of
classification in F-measure. As we can see in the Table 3, they also
obtained a good performance in each class 70.24% for mechanism,
69.33% for effect, 77.75% for advice and 46.38% for int over the
whole dataset.

From the review of the related work, we note that no work has
performed a full and detailed study of the DDI classification by using
MV-RNN. Therefore, our aim is to explore the Recursive Matrix-
Vector Spaces in the biomedical domain and to work in a multi-class
classification setting for reporting a complete analysis on the DDI
corpus, studying in depth its performance for each type of DDI.

DDI-DrugBank DDI-MedLine Total
EFFECT - - 0.693
MECHANISM - - 0.702
ADVICE - - 0.777
INT - - 0.463
TOTAL 0.715 0.521 0.697

Table 3. Liu et al [27] F1-scores for DDIExtraction Shared Task 2013.

3 EXPERIMENTAL SETTINGS

The Section 3.1 reviews the dataset used in the DDIExtraction Shared
Task 2013, the DDI corpus [15]. In addition, the Section 3.2 briefly
describe the details of the MV-RNN system proposed by Socher et al.
[28] that is used in this work for the drug-drug interaction extraction.

3.1 Dataset

The major contribution of DDIExtraction has been to provide a
benchmark corpus, the DDI corpus. The DDI corpus is a valuable
annotated corpus that provides a gold standard data for training and
evaluating supervised machine learning algorithms to extract DDIs
form texts. It contains 233 selected abstracts about DDIs from Med-
line (DDI-MedLine) and other 792 texts from the DrugBank database
(DDI-DrugBank). The corpus was manually annotated with a total
of 18,502 pharmacological substances and 5028 DDIs. The qual-
ity and consistency of the annotation process was ensured through
the creation of annotation guidelines and was evaluated by the mea-
surement of the inter-annotator agreement (IAA) between two anno-
tators. It should be noted that IAA can be considered as an upper
bound on the performance of the automatic systems for the detec-
tion of DDIs. The agreement was very high for the DDI-DrugBank
dataset (Kappa=0.83), and moderate for the DDIs in DDI-MedLine
(0.55-0.72). This is due to the fact that MedLine abstracts have far
more complexity than texts from the DrugBank database, which are
usually expressed in simple sentences. A detailed description of the
method used to collect and process documents can be found in [23].
The corpus is distributed in XML documents following the unified
format for PPI corpora proposed by Pyysalo et al., [21] (see Fig-
ure 1). A detailed description and analysis of the DDI corpus and its
methodology is described in [15].

As it was already mentioned, four different types of DDI relation-
ships are included in the DDI corpus. Bellow, they are described in
more detail by examples:

• mechanism: This type is used to annotate DDIs that are described
by their pharmacokinetic (PK) mechanism (e.g. Grepafloxacin
may inhibit the metabolism of theobromine).

• effect: This type is used to annotate DDIs describing an effect
(e.g. In uninfected volunteers, 46% developed rash while receiv-
ing SUSTIVA and clarithromycin) or a pharmacodynamic (PD)
mechanism (e.g. Chlorthalidone may potentiate the action of other
antihypertensive drugs).

• advice: This type is used when a recommendation or advice re-
garding a drug interaction is given (e.g. UROXATRAL should not
be used in combination with other alpha-blockers).

• int: This type is used when a DDI appears in the text without pro-
viding any additional information (e.g. The interaction of omepra-
zole and ketoconazole has been established).

Figure 2 shows some examples of annotated texts in the DDI cor-
pus. The first example (A), taken from the MedLineDDI dataset, de-
scribes a DDI of mechanism type between a drug (named using a
synonym different from its most common generic name, fomepizole)
that inhibits the metabolism of a substance notapproved to be used in
humans (1,3-difluoro-2-propranol). The second example (B) is also
a sentence taken from MedLine and describes the consequence of a
DDI (effect type) between estradiol (a generic drug) and endotoxin
(a substance notapproved to be used in humans) in an experiment
performed in animals. The last example (C) is a paragraph from the
DDI-DrugBank dataset. Its first sentence describes the consequence
of the interaction (effect type) of a drug, denominated by its brand
name (Inapsine), when is co-administered with five different groups
of drugs. The third sentence in C shows a recommendation to avoid
these DDIs (advice type). Table 4 shows the distribution of the DDI
types in the DDI corpus.
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Figure 1. Example of an annotated document of the DDI corpus.[26].

Figure 2. Some examples of sentences in the DDI corpus [26].
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DDI-DrugBank DDI-MedLine Total
EFFECT 1855 (39.4%) 214 (65.4%) 2069 (41.1%)
MECHANISM 1539 (32.7%) 86 (26.3%) 1625 (32.3%)
ADVICE 1035 (22%) 15 (4.6%) 1050 (20.9%)
INT 272 (5.8%) 12 (3.7%) 284 (5.6%)
TOTAL 4701 327 5028

Table 4. DDI types in the DDI corpus.

3.2 MV-RNN
Our approach is based on Recursive Neural Network. In particular,
Matrix-Vector spaces (MV-RNN) was the first Deep Learning archi-
tecture that obtained improvements in classification of semantic rela-
tionships [28]. This model can determine the meaning of each word
and the rules used to combine them in long sentences. To this end,
the model assigns a vector and a matrix to every word and it learns a
compositional function for computing these representations (Figure
3).

Figure 3. An example of how MV-RNN architecture learns the vectors in
the nodes of the path between the two entities (dotted line) to classify their

relationship [28].

Firstly, MV-RNN uses as input a binarized parse tree of phrases
and sentences of arbitrary syntactic type and length from the Stanford
Parser [17] as the RNN structure. Then, MV-RNN learns, in every
node of the tree, a vector that represents the meaning of a constituent
(a word or a sentence), and a matrix that captures how this constituent
changes the meaning of their neighbours. Initially, we use the pre-
trained 50-dimensional word vectors from [6] and the word matrices
as an identity matrix with a small Gaussian noise. Afterwards, the
MV-RNN architecture computes the parent vector p of each node as
a single layer neural network:

p = g(W

[
C1c2
C2c1

]
+ b)

where c1 and c2 are the word vectors of their children in the binarized
tree with dimensionality n, C1 and C2 ∈ Rn×n are matrices for
single words, W ∈ Rn×2n is a matrix that maps both words back
into the same n-dimensional space, g is a non-linearity function and
b is the bias term. In addition, another function is used for computing
non-terminal phrase matrices:

P = WM

[
C1

C2

]
where WM ∈ Rn×2n are the weight matrices. Finally, the MV-RNN
uses the computed vector of the highest nodes in the path between

the pairs of words as features for predicting a DDI type label using a
simple softmax classifier.

MV-RNN was adapted by Socher et al., [28] for the SemEval-10
task 8, whose goal was the classification of relationships between
nominals. Thus, we had to transform the DDI corpus to the format
of the SemEval-2010 task 8. Since the implementation of MV-RNN
does not deal with discontinuous entities, we removed DDI candi-
dates involving this kind of entities. In addition, if a sentence con-
tains more than one interaction we separate them into independent
sentences, i. e. we create one instance per interaction. Following this,
we got a total of 33351 sentences. It should be noted that sentences
from the SemEval-2010 task 8 dataset are much simpler than our
sentences in the DDI corpus. Drug-drug interactions are usually de-
scribed by long sentences with complex structures (such as subordi-
nate clauses, oppositions, and coordinate structures, among others).
Moreover, many drugs have very long and complex names, specially,
chemical compounds (for example, 1,3-difluoro-2-propanol). These
drug names poses a significant challenge for the tokenization task of
the biomedical texts. In fact, we observed that the Standford parser
not being able to provide an accurate tokenization of the sentences in
the DDI corpus. A wrong tokenization can cause a wrong syntactic
tree parser, and thereby, a bad input for the MV-RNN. For this reason,
chemical compound names were replaced by easier names of com-
mon drugs. For example, 1,3-difluoro-2-propanol was substituted by
Rifampin. Similarly, numerical expressions were also simplified.

4 RESULTS AND DISCUSSION
This section summarizes the evaluation results with the method MV-
RNN with the DDI corpus and provides detailed analysis and dis-
cussion. The results have been measured by Precision (P), Recall (R)
and F-score (F) for all the categories in the classification.

Table 5 shows the performance of MV-RNN over the DDI corpus
test dataset. The model achieves an F-score of 46% using a syntactic
information for building the RNN architecture. In general, precision
is greater than recall due to the large number of False Negatives in
each class caused by the misclassification. The class advice achieves
the best performance (54% in F-measure) with respect to the other
classes because these recommendations follows specific patterns and
are easy to learn.

True False False Precision Recall F-measure
Positives Positives Negatives

EFFECT 163 206 197 0.44 0.45 0.45
MECHANISM 105 102 194 0.51 0.35 0.42
ADVICE 108 71 113 0.60 0.49 0.54
INT 36 18 60 0.67 0.38 0.48
TOTAL 412 397 564 0.51 0.42 0.46

Table 5. Results on DDI Corpus using MV-RNN without external features.

Table 6 shows the results adding external features such as Part-
of-Speech tags, the WordNet hypernyms and the name entity tags
of the two words to the computed vector of the highest node in the
relation for the classification in the softmax layer. These three fea-
tures increase the performance F-measure (+4%) and the Recall for
all the classes. Although the features raise the number of instances
classified correctly, the False Positives are 38 instances bigger than
without using external features. It may be due to an over-fitting in the
softmax layer because in all the cases the number of False Negatives
decreases whereas that the False Positives increases with respect to
the Table 5 causing a trade-off problem.
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True False False Precision Recall F-measure
Positives Positives Negatives

EFFECT 193 232 167 0.45 0.54 0.49
MECHANISM 121 110 178 0.52 0.40 0.46
ADVICE 119 76 102 0.61 0.54 0.57
INT 37 17 59 0.69 0.39 0.49
TOTAL 470 435 506 0.52 0.48 0.50

Table 6. Results on DDI Corpus using MV-RNN with external features.

The main cause of our low performance may be due to the fact
that Stanford parser is not able to correctly build the syntactic trees
of sentences from the DDI corpus, which usually have complex struc-
tures (such as subordinate clauses, oppositions and coordinate struc-
tures, complex named entities among others). Wrong syntactic trees
involve wrong RNN structures that are not able to capture the com-
positionality of sentences.

5 CONCLUSIONS
In this work we explore the extraction of interactions between drugs
in the DDI corpus with a Recursive Neural Network used in Matrix-
Vector spaces. From the review of the related work, Deep Learning
architectures, such as Recursive or Convolutional Neural Networks,
outperform the most common machine learning algorithms applied
to relation extraction so far. MV-RNN can learn the meaning of a
word and how that word modifies the context of the sentence through
the combination of vectors and matrices. This recursive network con-
tains the parsing information of each sentence regardless of length
and grammatical structure.

However, MV-RNN does not seem to provide satisfactory results
for the classification of DDIs. In fact, our results are much lower
than those reported using a CNN [27]. We think that this is mainly
due to the Standford parser not being able to capture the structural
complexity of sentences in the biomedical literature. It should be
noted that DDIs are usually described by long sentences with com-
plex structures (such as subordinate clauses, oppositions, and coor-
dinate structures, among others). Moreover, drugs can have long and
complex, specially, chemical compounds (for example, 1,3-difluoro-
2-propanol). This kind of names poses a significant challenge for
the correct tokenization of the texts. For this reason, we decided to
simplify this kind of named entities by blinding with common drug
names. Unfortunately, our experiments show that the solution is not
enough to solve this problem. Thus, we should have used a biomed-
ical parser capable to provide accurate tokenization and syntactic
trees of the sentences. Furthermore, MV-RNN uses the WordNet dic-
tionary in order to achieve the hypernyms for the interacting drugs.
However, most drugs are not included in WordNet since it is not a
biomedical domain specialized resource.

As future work we propose to replace the initial word vectors from
[6] by those from a new word vector model generated using a state-
of-the-art word embedding system, such as Wor2Vec [19] and trained
on a large collection of biomedical texts (for example, the latest ver-
sion of MedLine). Thus, our new model will also include biomedical
technical terms and jargon, which are not generally represented in
[6]. Moreover, we would like to explore if the position embeddings
and negative instance filtering improve our results. Alternatively, in-
stead of the Stanford parser, we also plan to use a biomedical parser
capable to capture the complex structures of the biomedical sen-
tences in order to build the RNN structures. Moreover, other biomed-
ical terminological resources such as the UMLS Methatesaurus [1]

or the ATC drug classification system 8 will be included in order to
achieve the hypernyms, instead of the use of WordNet. In addition,
other deep learning architectures (such as CNNs) will be also stud-
ied.
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Heuristic Constraint Answer Set Programming
Erich C. Teppan1 and Gerhard Friedrich1

Abstract. Constraint answer set programming (CASP) is a family
of hybrid approaches integrating answer set programming (ASP) and
constraint programming (CP). These hybrid approaches have already
proven to be very successful in various domains. In this paper we
present the CASP solver ASCASS (A Simple Constraint Answer Set
Solver), which provides novel methods for defining and exploiting
problem-dependent search heuristics. Beyond the possibility of using
already built-in problem-independent heuristics, ASCASS allows on
the ASP level the definition of problem-dependent variable selection,
value selection and pruning strategies, which guide the search of the
CP solver. The concepts are exemplified and evaluated with respect
to the real world Partner Units Problem (PUP). Due to a sophisti-
cated heuristic, which cannot be represented by other ASP or CASP
solvers, ASCASS shows superior performance.

1 Introduction

During the last decade, Answer Set Programming (ASP) under the
stable model semantics [9] has evolved to an extremely powerful
approach for solving combinatorial problems. Especially conflict-
driven search mechanisms contribute to the high performance of
state-of-the-art solvers [8]. Furthermore, ASP provides superior
problem encoding capabilities as ASP is strongly declarative in na-
ture and even provides language features which go beyond first order.

However, the expressive power on the one hand and the potent
conflict-driven search approach on the other hand do not come for
free. Current ASP solvers employing conflict-driven search trans-
form the higher-order problem representation to propositional logic.
This transformation (called grounding) constitutes the space bottle-
neck of current ASP systems. Once the grounding step is completed,
conflict-driven search in combination with state-of-the-art look-back
heuristics like VSIDS and restarts [12] typically shows superior per-
formance compared to other search approaches. Yet, grounding is not
possible for many industrial-sized problem instances.

Firgure 1 shows how the size of the grounding explodes for the in-
cremental scheduling problem instances from the ASP competition2.
For the instances incorporating 120 job operations the size of the
grounding is more than 50 GByte.

In industrial scheduling domains the sizes of problem instances
are typically significantly higher. Scheduling instances of our project
partners Infineon Austria incorporate >10000 job operations for a
weekly workload performed on >100 machines in the back-end (i.e.
where chips are cut and packaged) and >100000 job operations for
a weekly workload performed on >1000 machines in the front-end
(i.e. where the chips are actually produced). Thus, such instances are

1 Universität Klagenfurt, Austria, email: firstname.lastname@aau.at
2 Find instances, encodings and grounders/solvers at

www.mat.unical.it/aspcomp2014. Our tests were done with gringo4
and the provided ’new’ encoding.

Figure 1. Grounding size for the incremental scheduling problem with
respect to number of job operations

clearly out of reach for conventional ASP approaches.
One approach that emerged also out of the need of easing the

grounding was Constraint Answer Set Programming (CASP) [14].
CASP can be seen as a hybrid approach extending ASP by Constraint
Programming (CP) features. Conceptually, it is very close to satisfi-
ability (SAT) modulo theory approaches, which integrate first-order
formulas with additional background theories such as real numbers
or integers [16].

For combining ASP and CP there are basically two approaches.
First, solvers like Clingcon [15] are based on the extension of the
ASP input language in order to support the formulation of con-
straints. A different approach has been introduced by the Ezcsp
solver [4] where ASP and CP are not integrated into one language.
ASP rather acts as a specification language for Constraint Satisfac-
tion Problems (CSPs). The main idea is that answer sets constitute
CSP encodings, which are used as input for a CP solver.

For certain classes of problems like industrial-sized scheduling
CASP was already successfully applied [5]. Especially search prob-
lems with large variable domains often profit from the CASP repre-
sentation due to the alleviation of the grounding bottleneck [13].

Of course, the complexity of problem solving does not vanish by
easing the grounding bottleneck but it is rather shifted from ground-
ing in ASP to search in CP. In the context of CASP, often a ma-
jority of the solution calculation is done by the CP solver. Hence,
the applied search strategies on the CP level play a crucial role for
the successful application of CASP in real-world problem domains.
However, up to now there was no focus on the development of so-
phisticated features for expressing and exploiting search strategies in
CASP solvers. Consequently, the means for expressing and exploit-
ing search strategies on the CP level are rather limited.

Clingcon3 and Ezcsp4 provide a set of built-in problem-

3 www.cs.uni-potsdam.de/clingcon/
4 mbal.tk/ezcsp/index.html
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independent strategies depending on the underlying CP solver.
Clearly, for many real-world problem domains problem-independent
strategies are not sufficient and problem-dependent heuristics are
needed. Any problem-dependent heuristic on the CP level basically
consists of three components:

1. a problem-dependent variable selection strategy
2. a problem-dependent value selection strategy
3. a problem-dependent pruning strategy

In EZCSP, problem-dependent variable selection strategies are al-
ready supported by a special label-ordering predicate. What is miss-
ing is the possibility of expressing custom value ordering and pruning
strategies.

In this paper we present ASCASS, a novel CASP solver, which
uses Clingo for answer set solving and the Java framework Jacop
for CP solving. ASCASS combines and extends the heuristic possi-
bilities of state-of-the-art CASP solvers and makes them completely
available on the problem encoding level. Beyond the usage of built-
in strategies, ASCASS provides powerful constructs for the formula-
tion and exploitation of problem-dependent heuristics consisting of
variable selection, value selection and pruning strategies.

By means of the real-world Partner Units Problem (PUP), which
constitutes one of the hardest benchmarks in the ASP competition,
we exemplify problem encoding in ASCASS. We furthermore show
how to express the currently most powerful heuristic for this prob-
lem in ASCASS. It is shown that due to this heuristic, which, to the
best of our knowledge, can not be expressed within any other ASP
or CASP approach, ASCASS outperforms state-of-the-art ASP and
CASP solvers.

2 Background

In this section we introduce the basic concepts of answer set and
constraint answer set programming as it is needed for the purposes
of this article. In particular, we ignore disjunctive logic rules and
classical negation in ASP for readability reasons. For information
about ASP and CASP please refer to [9], [8], [14], [15] and [4].

2.1 Syntax of ASP

in ASP, a term refers either to a variable or a constant. Strings start-
ing with upper case letters denote variables. Constants are repre-
sented by strings starting with lower case letters, by quoted strings
or by integers. An atom is either a classical atom, a cardinality atom
or an aggregate atom. A classical atom is an expression p(t1, . . . , tn)
where p is an n-ary predicate and t1, . . . , tn are terms. A negation
as failure (NAF) literal is either a classical atom λ or its negation
not λ. A cardinality literal is either a cardinality atom ψ or its nega-
tion not ψ. A cardinality atom is of the form

l ≺l {a1 : l11 , . . . , l1m ; . . . ; an : ln1 , . . . , lno} ≺u u

where

• ai : li1 , . . . , lij represent conditional literals in which ai (the
heads of the cardinality atom) constitute classical atoms and lij
are NAF literals

• l and u are terms (i.e. variables or constants) representing non-
negative integers. If not specified, the defaults are 0 respectively
∞.

• ≺l and ≺u are comparison operators. If not specified, the default
is ≤.

An aggregate literal is either an aggregate atom ϕ or its negation
not ϕ. An aggregate atom is of the form

l ≺l #op{t11 , . . . , t1m : l11 , . . . , l1n ; . . . ;

to1 , . . . , top : lo1 , . . . , loq} ≺u u

Most syntactical parts of aggregate literals are the same as for car-
dinality atoms, except that

• a head of a conditional literal is a tuple of terms ti1 , . . . , tij and
• #op is an aggregate function in {#min,#max,

#count,#sum}.

Generally, a rule is of the form

h← b1, . . . , bm, not bm+1, . . . , not bn.

where

• h, b1, . . . , bm are atoms (i.e. positive literals),
• not bm+1, . . . , not bn are negative literals,
• H(r) = {h} is called the head of the rule,
• B(r) = {b1, . . . , bm, . . . , not bm+1, . . . , not bn} is called the

body of the rule,
• B+(r) = {b1, . . . , bm} is called the positive body of the rule and
• B−(r) = {not bm+1, . . . , not bn} is called the negative body of

the rule.

A rule r with H(r) including a cardinality atom is called choice
rule. A rule r where B(r) = {}, e.g. ’a ←’ is called fact. For facts,
typically ’←’ is omitted. A rule r where H(r) = {}, e.g. ’← b’, is
called integrity constraint, or simply constraint.

Furthermore, we allow the typically built-in arithmetic functions
(+, −, ∗, /) and comparison predicates (=,6=,<,>,≤,≥).

2.2 Semantics of ASP
The semantics of a non-ground ASP program is defined w.r.t. its
grounding. A program’s grounding can be defined in terms of its Her-
brand universe and base. The Herbrand universe HUP of a program
P is the set of all constants appearing in P .

The grounding for a rule r without cardinality atoms and aggre-
gates is the set of rules obtained by applying all possible substitu-
tions of variables in r with constants in HUP . The grounding of a
rule, which contains cardinality or aggregate literals, is defined by
the two-step instantiation described in [17]: first produce a set of
partially grounded rules by substitution of variables occurring out-
side the cardinality/aggregate literal and then, within each partially
grounded rule, substitute each conditional literal by a set of ground
conditional literals by substituting the remaining variables inside the
cardinality or aggregate literal.

The grounding PG of a program P is the union of all rule ground-
ings. The Herbrand base HBP w.r.t P is the set of all positive NAF
literals (i.e. classical atoms) that occur in PG.

An interpretation I satisfies a (ground) positive NAF literal λ
(written as I � λ) iff λ ∈ I . A positive cardinality literal is satis-
fied by I iff the number of satisfied head literals in the cardinality
atom satisfies the lower and upper bounds l and u w.r.t. the order
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relations ≺l and ≺u. Both, bounds and comparison symbols are op-
tional. By default, 0 ≤ is used for the lower and ≤ ∞ for the upper
bound. A positive aggregate literal is satisfied iff the value returned
by the aggregate function #op applied on the set of term tuples ful-
filling its conditions does not violate the lower and upper bounds.
Here, #count counts the number of distinct term tuples fulfilling
the related conditions, and #min,#max and #sum are calculat-
ing the minimum, maximum or sum of the first terms in the distinct
term tuples fulfilling the related conditions. A negative literal not ω
is satisfied (written as I � not ω) iff ω is not satisfied.

A ground rule r is satisfied by I (written as I � r) iff the head
is satisfied or the body is not. The body of a rule is satisfied by I
iff all literals in the body are satisfied. The head of a rule is satisfied
iff the literal in it is satisfied. In particular, an empty body is always
satisfied and integrity constraints are satisfied iff the body is not sat-
isfied, i.e. the constraint is not violated. A program P is satisfied by
an interpretation I iff all rules in its grounding PG are satisfied.

An answer set for a program can be defined on the basis of the
program’s reduct [10, 17]. The reduct P I of a ground program P
relative to an interpretation I ⊆ HBP is defined asP I := {H(r)←
B(r)+ : r ∈ P,B(r)− ∩ I = ∅}.

An interpretation I ⊆ HBP (which may be empty) is an answer
set for a program P not containing choice rules iff

• I satisfies all rules r in P I , i.e. ∀r ∈ P I : I � r and
• I is subset-minimal, i.e. there is no I ′ ⊂ I so that I ′ satisfies all

rules in P I′ .

Choice rules can produce answer sets that are not subset-minimal,
which leads to a slight change of semantics when such rules are
present. For example, the program consisting only of the choice rule
{a}. possesses the two answer sets {} and {a}. In order to be in
line with the original semantics and thus restore subset-minimality
an equivalent program can be produced by extending the program as
follows:

For every head ai within a cardinality atom of a choice rule, add a
new atom a′i (which is not occurring elsewhere in the program) and
a constraint ← ai, a

′
i. Informally, a′i expresses that ai is not in the

interpretation. This way, the choice rule {a}. equivalently produces
the two answer sets {a′} and {a}. For convenience, we can imagine
the new atoms a′i and the constraints ← ai, a

′
i to be invisible. For

details, consult [8].
An ASP program is unsatisfiable iff it has no answer sets and sat-

isfiable otherwise.

2.3 Constraint Answer Set Programming
A constraint satisfaction problems (CSP) can be defined as a three-
tuple 〈V,D = {dom(v) : v ∈ V }, C〉 whereby V is a set of vari-
ables, D is the set of domains of the variables in V and C is a set
of constraints on variables in V . A solution to a CSP is an assign-
ment ∀v ∈ V, v := d ∈ dom(v) such that all constraints c ∈ C are
fulfilled. A CSP comprising only finite domains is called finite. If all
domains are defined over discrete values (most commonly integers),
the CSP is called discrete.

For integrating CP into ASP there are basically two approaches.
First, solvers like Clingcon [15] are based on the extension of the
ASP input language in order to support the definitions of constraints.
Take as a simple example the following encoding in Clingcon (’:-’
represents left-implication and ’!=’ represents 6=):

num(N):-N=1..3.

$domain(1..6).

var(X) $+ var(Y) $+ var(Z) $== 6 :-
num(X), num(Y), num(Z), X!=Y, Y!=Z, X!=Z.

var(1) $> 1.

$distinct{var(N):num(N)}.

The above encoding expresses that the sum of the three CSP vari-
ables var(1), var(2) and var(3) must be equal to six. The domain
of the variables is 1..6. Furthermore, var(1) must be greater than
one and all CSP variables must be distinct to each other. The ASP
and CSP are fully integrated into one language. CSP specific con-
structs are indicated by $, like $+ or $==. $distinct constitutes a well
known global constraint, i.e. a constraint over a set of variables. In
Clingcon CSP variables are not defined explicitly but indirectly by
the constraints. CP solving is integrated in the answer set production
process and carried out by the Gecode solver. For more information
on Clingcon please refer to [15].

The Ezcsp solver [4] is based on a different approach where ASP
and CP are not integrated into one language. ASP rather acts as a
specification language for Constraint Satisfaction Problems (CSPs).
The main idea is that answer sets constitute CSP encodings, which
are used as input for a CP solver. The above example can be ex-
pressed in Ezcsp as:

num(N):-N=1..3.

cspdomain(fd).

cspvar(var(N),1,6):-num(N).

required(var(X) + var(Y) + var(Z) == 6):-
num(X), num(Y), num(Z), X!=Y, Y!=Z, X!=Z.

required(var(1) > 1).

required(all_distinct([var/1]).

After some pre-processing, an answer set is calculated which in-
cludes cspdomain-, cspvar- and required facts. cspdomain(fd)
denotes that the CSP is finite and discrete. Ezcsp is also able to handle
real domains. CSP variables are explicitly defined by cspvar facts
also defining lower and upper bounds of the variable domains. Con-
straints are represented as required facts. For expressing global con-
straints, and thus refer to sets of CSP variables, Ezcsp allows the us-
age of functional symbols. E.g. [var/1] refers to all variables formed
by the unary function var. Once an answer set has been produced,
the CSP encoded within the cspdomain-, cspvar- and required
facts is passed to the CP solver. As answer set production and CSP
solution search are two separated processes, different CP solvers can
be used in Ezcsp. Currently, Sicstus- and B-Prolog are supported.

The semantics of a program builds on the notion of extended an-
swer sets [4]: A pair 〈A,S〉 is an extended answer set of program Π
iff A is an answer set of Π and S is a solution to the CSP defined
by A. We further define that the empty CSP (i.e. without any CSP
variables) possesses the empty solution.

For CSP solution search, Ezcsp provides different search strategies
impacting the underlying CP solver. In case of Sicstus Prolog as a CP
solver, the built-in value selection strategies step (min domain value,
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when ascending order is used, max domain value when descending
order is used) and bisect (bisection of the domain in the middle)
are available. Similarly in case of B-Prolog, the bisection strategies
split and reverse split are supported. The supported variable selec-
tion strategies are leftmost (leftmost variable), min (leftmost variable
with minimal lower bound), max (leftmost variable with maximal up-
per bound), and ff (first-fail). By the special label order/2 predicate it
is also possible to define problem-dependent CSP variable orderings
for the CP solver. However, there are no constructs for expressing
problem dependent value or pruning strategies.

3 A Simple Constraint Answer Set Solver

In the following we introduce our novel CASP solver ASCASS. First,
we give a brief introduction to the overall architecture of ASCASS
and the encoding of CSPs in ASCASS. After that, we present the
means for formulating problem-dependent heuristics. This consti-
tutes the significant novel feature of our solver and the main con-
tribution of this article.

3.1 Architecture

ASCASS5 is a finite discrete CASP solver following the approach of
Ezcsp, i.e. the input language is pure ASP and the answer sets encode
CSPs. Figure 2 shows the overall architecture of ASCASS. Answer
set production (grounding and solving) is done by Clingo6, which is
currently one of the most powerful ASP systems. The input language
is the ASP standard ASP-Core-27.

After answer set solving, a produced answer set is handed over
to a parsing module that extracts the facts which encode the CSP
and search directives. This information is used to instantiate a cor-
responding CSP in the CP solver and perform search conforming
to the given search directives. Currently, Jacop8 is used within AS-
CASS as a CP solver. In case that the CSP could not be solved by
the CP solver or a timeout occurred (defined by the special predi-
cate csptimeout(∆)), the process continues with the next answer
set, until a solution is found, or there are no more answer sets. The
empty CSP (i.e. when there is not a single CSP variable) is always
satisfiable and possesses the empty CSP solution.

3.2 Encoding of CSPs

ASCASS focuses on finite discrete Constraint satisfaction problems
(CSPs). In order to encode a CSP within ASCASS there can be used
a number of specific predicates. Of course, in the input these predi-
cates can contain variables. The following explanations refer to their
grounded form.

The predicates cspvar(α, λ, υ) and cspvar(α, λ, υ, η) are re-
sponsible for encoding CSP variables. Hereby, α represents the
variable name and λ and υ represent respectively the numerical
lower and upper bound of the variable’s domain. For example
cspvar(x, 1, 10) stands for a CSP variable v with the domain [1..10].
The numerical priority η is used to define a custom variable selection
ordering. When using the variable selection strategy priority (see
below), the CP solver selects the variable with the highest priority
first.

5 http://isbi.aau.at/hint/ascass
6 sourceforge.net/projects/potassco/files/clingo
7 www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
8 jacop.osolpro.com

The predicate cspconstr(α, ρ, τ) encodes a relational constraint
(i.e. =, <>,<,<=, >,>=) over a variable α. ρ denotes the type of
relation and must be a constant out of {eq, neq, lt, lteq, gt, gteq}. τ
denotes another CSP variable or a numerical constant. For example,
cspconstr(x, lt, 5) expresses that variable x must be lower than 5.

The predicate csparith(α, π, β, ρ, γ) encodes arithmetic con-
straints. α, β and γ are CSP variable names. Like for cspconstr,
the constant ρ denotes the type of relation. π is a constant represent-
ing an arithmetic operation. Currently, ASCASS supports addition
(plus), subtraction (minus), multiplication (mult), division (div)
and exponent (exp). For example, csparith(xa, plus, xb, eq, xc)
states that the sum of the values of xa and xb must be equal the
value of xc.

For expressing logical constraints predicates of the form
cspif(Ξ1, and,Ξ2, and, . . . , and,Ξm, then,Ξm+1, or,Ξn) can
be used. Each Ξ consists of a variable α, a relational symbol
ρ and another variable or numerical constant τ . For example,
cspif(x, lt, 5, and, y, gt, 10, then, z, gteq, 0) is to be read as ‘if x
is lower than 5 and y is greater than 10 then z must be non-negative’.

Global constraints are constraints over arrays of vari-
ables. In ASCASS global constraints are defined by
predicates of the form cspglobal(σ1, . . . , σm, κ) and
cspglobal(σ1, . . . , σm, κ, τ1, . . . , τn). κ is a constant denoting
the type of global constraint. σ1, . . . , σm represent arrays of
variables. τ1, . . . , τn represent single CSP variables or integers. The
selection of global constraints currently supported by ASCASS has
been determined by the needs of our application areas and will be
further expanded. ASCASS currently supports the following global
constraints9:

• min: cspglobal(σ,min, τ), the minimum value of the variables σ
is equal to τ

• max: cspglobal(σ,max, τ), the maximum value of the variables
σ is equal to τ

• sum: cspglobal(σ, sum, τ), the sum of values of the variables σ
is equal to τ

• count: cspglobal(σ, count, τ1, τ2), τ1 is equal to the counted
number of variables in σ with value τ2

• global cardinality: cspglobal(σ1, σ2, gcc), a more general count-
ing constraint where the occurring values in σ1 are counted in the
corresponding counter variables in σ2

• all different: cspglobal(σ, alldiff), all variables in σ are mutu-
ally unequal

• element: cspglobal(σ, element, τ1, τ2), the value of the τ1-th
variable in σ is equal to τ2

• cumulative: cspglobal(σ1, σ2, σ3, cumulative, τ), σ1 represents
the starting times of |σ1|many jobs, σ2 represents the durations of
the jobs, σ3 represents the amounts of needed resources of the jobs
and τ represents the allowed accumulated amount of resources at
any time point

• bin packing: cspglobal(σ1, σ2, σ3, binpacking), σ1 represents
bin assigments for |σ1| many items, σ2 represents the bin sizes
of the |σ2| many bins and σ3 represents the item sizes

In order to address arrays of CSP variables, ASCASS not
only allows simple constants but also n-ary functional terms for
variable names of the form φ(ι1, . . . , ιn) with ι1, . . . , ιn repre-
senting string or integer arguments (see Figure 3). The special

9 More information about global constraints can be
found at http://jacop.osolpro.com/guideJaCoP.pdf and
http://sofdem.github.io/gccat/

76



Figure 2. Architecture of ASCASS

functional argument all acts as a placeholder and can be used
for addressing arrays of variables. For example, take the four
variable definitions cspvar(v(1, 1), 1, 10), cspvar(v(1, 2), 1, 10),
cspvar(v(2, 1), 1, 10) and cspvar(v(2, 2), 1, 10). A natural inter-
pretation of the arguments is row and column of a two-dimensional
variable array. Consequently, cspglobal(v(all, 2), alldiff) ex-
presses that the values of all second column’s variables, in our case
v(1, 2) and v(2, 2), must be different to each other. v(all,all) stands
for all variables in the two-dimensional array, i.e. all variables formed
by the functional symbol v with arity 2.

Figure 3. Concept of variable arrays in ASCASS

3.3 Encoding of variable selection strategies
Apart from the predicates for defining a CSP, ASCASS pro-
vides predicates for steering the search of the CP solver. The
predicates cspvarsel(ε) and cspvarsel(ε, θ) define the variable
selection strategy to be used. Herby, ε is the primary selec-
tion strategy and, if defined, θ acts as a secondary, tiebreaking
strategy. For variable selection, ASCASS currently supports the
problem-independent built-in strategies smallestDomain, mostCon-
strainedStatic, mostConstrainedDynamic, smallestMin, largestDo-
main, largestMin, smallestMax, maxRegret, weightedDegree and the
problem-dependent strategy priority.

When using the priority-strategy, ASCASS builds an order-
ing of the CSP variables based on the provided priorities η in
cspvar(α, λ, υ, η). Variables with high priorities are selected first.
Variables for which there is no η defined are selected as the last ones.
Hence, the priority strategy in combination with the variable prior-
ities is similar to the label order predicate in Balduccini’s EZCSP.

3.4 Encoding of value selection strategies
For value selection ASCASS provides the predicates cspvalsel(φ)
and cspvalsel(φ, ϕ) where φ and ϕ are constants denoting the strat-

egy. As it is often important to have different value selection strate-
gies for different sets of variables, ASCASS provides also the pred-
icates cspvalsel(σ, φ) and cspvalsel(σ, φ, ϕ) where σ represents
an array of variables like in global constraints. ASCASS supports
the already built-in strategies indomainMin, indomainMiddle, indo-
mainMax and indomainRandom. For expressing problem-dependent
value selection strategies, the novel strategy indomainPreferred can
be used.

When using indomainPreferred, the CP solver first tries to use
specified values before changing to the built-in strategy ϕ (min-
Domain if not stated otherwise). For specifying preferred val-
ues, ASCASS provides the special predicate cspprefer(α, ρ, τ)
and cspprefer(α, ρ, τ, η). Like for relational constraints, α rep-
resents a CSP variable, ρ represents a relational symbol and τ
stands for a further variable or a numerical constant. For example,
cspprefer(v, eq, 5) states that for the CSP variable v a preferred
value is 5. In order to specify an ordering of the specified values,
it is possible to make use of a numerical priority η. Higher priority
statements are taken into account first by ASCASS. For example, if
there is given cspprefer(v, eq, 5, 1) and cspprefer(v, eq, 20, 2),
ASCASS tries to first label v with 20 and only after that with 5. Of
course, only preferred values, which are still in the variable’s do-
main, are taken into account. In case that τ denotes another variable,
the minimum value in the current domain of τ is used as a preferred
value, i.e. τ does not need to be singleton for specifying a preferred
value of α. This in combination with global constraints is a highly
dynamic and powerful mechanism.

As with the relational constant eq in combination with the priori-
ties η every ordering of preferred values can be expressed, the usage
of lt, lteq, gt and gteq can be clearly seen as syntactic sugar. By
using lt, lteq, gt and gteq sets of preferred values can be expressed:

• lteq τ : {τ, τ − 1, . . . ,−∞}
• lt τ : {τ − 1, . . . ,−∞}
• gteq τ : {τ, τ + 1, . . . ,∞}
• gt τ : {τ + 1, . . . ,∞}

Note that all preferred values of such a set P have the same
priority (possibly given explicitly by η). For defining an order re-
lation over P , i.e. fix the order in which ASCASS considers the
preferred values in P , the following holds: For lt and lteq de-
creasing order is used, i.e. τ, τ − 1, . . . ,−∞ and for gt and gteq
increasing order is used, i.e. τ, τ + 1, . . . ,∞. For example hav-
ing the variable definition cspvar(v, 1, 10) and the value selec-
tion strategy cspvalsel(indomainPreferred, indomainMin),
cspprefer(v, lt, 5) would effect that ASCASS considers the domain
values in the following order: 4, 3, 2, 1, 5, 6, 7, 8, 9, 10. The reason
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why for lt and lteq descending order and for gt or gteq ascending or-
der is used is simply the following: Would it be the other way round,
the behavior with lt and lteq would conform to indomainMin and
with gt and gteq to indomainMax.

3.5 Encoding of pruning strategies
The third component of many problem-dependent heuristics is the
pruning strategy. For specifying how a search tree is pruned, AS-
CASS provides the special predicate cspsearch(ω, µ). Hereby, ω
specifies the pruning type and µ specifies a numerical limit that,
when reached, triggers backtracking. Again it could be beneficial
having different limits for different groups of variables or even hav-
ing no limit on certain variables whilst search on others is limited.
To this, ASCASS provides the predicate cspsearch(σ, ω, µ) with σ
denoting an array of variables like for global constraints.

Currently, ASCASS provides two pruning types.
cspsearch(limited, µ) limits the number of wrong decisions
for variables. If the number µ of wrong choices for a variable is
reached, backtracking is triggered and the counter for the variable
is reset. For example, cspsearch(limited, 3) specifies that for
every variable v there must not be more than three labeling trials
for v within a search branch. The second pruning type is based on
limited discrepancy search [11] and operates on the level of search
paths. When specifying cspsearch(lds, µ) only a certain number of
wrong decisions (called discrepancies) along the whole search path
is allowed. If this number reaches µ, backtracking is triggered.

Furthermore, it is possible to limit search time of the CP solver by
csptimeout(∆) where ∆ is the number of seconds when the timeout
is triggered. The timeout concerns only the search of Jacop so that
search might start over based on the next answer set if such exists.

3.6 Directives for answer set production
In order to specify which heuristic is to be used by Clingo, the spe-
cial ASCASS predicate aspheuristic(ν) can be used. Hereby, ν is a
constant denoting the heuristic, which is passed to Clingo as a com-
mand line option --heur = ν. As this happens before the actual
answer set solving, aspheuristic(ν) must only be used as a single
fact within program source code. Common heuristics to be used are
V SIDS or Berkmin [12]. When using aspheuristic(domain),
Clingo uses a user-defined heuristic defined via the special predicate
heuristic [7]. For limiting the number of produced answer sets, the

special predicate aspnumas(∆) can be used. ∆ is a non-negative
integer and is passed to Clingo as a command line option. The de-
fault is ’1’ and ’0’ effects the production of all answer sets. Like
aspheuristic, also aspnumas must only be used as a single fact
within the problem source code. Similarly, asptimeout(∆) speci-
fies a timeout for answer set solving.

4 Proof of concept
In this section we exemplify the programming in ASCASS and give
first evaluation results for the real-world partner units configuration
problem [3, 1]. We want to emphasize that the focus is on the formu-
lation of problem-dependent heuristics.

4.1 The Partner Units Problem
We want to exemplify the expressive power of ASCASS with respect
to the partner units problem (PUP) out of three reasons.

1. The PUP is a real world combinatorial problem with many differ-
ent application domains [2].

2. The PUP is one of the hardest benchmark problems participating
in the ASP competitions10.

3. There exists an effective and non-trivial problem-dependent
heuristic to solve the PUP.

The PUP originates in the domain of railway safety systems. One
of the problems in this domain is to make sure that certain rail tracks
are not occupied by a train/wagon before another train enters this
track. The signals for the corresponding occupancy indicators are cal-
culated by special processing units based on the input of several ob-
serving sensors. Because of fail-safety and realtime requirements the
number of sensors respectively indicators, which can be connected to
the same unit, is limited (called unit capacity, UCAP). Also one sen-
sor/indicator device can only be directly connected to one unit. How-
ever, a unit can be connected to a limited number (called inter unit
capacity, IUCAP) of other units. These units are called the partner
units of the unit. Devices (i.e. sensors and indicators) can only com-
municate with devices connected to the same unit and with devices
connected to one of the partner units. Given the IUCAP, UCAP and
a bipartite input graph represented by edges specifying which sensor
data is needed in order to calculate the correct signal of an occupancy
indicator, the problem consists in connecting sensors/indicators with
units and units with other units such that all communication require-
ments are fulfilled and IUCAP and UCAP are not violated.

The state-of-the-art heuristic for solving PUP is the QuickPup
heuristic proposed in [18]. QuickPup is based on three major tech-
niques. First, based on the input graph and a distinguished root in-
dicator, QuickPup produces a topological ordering of the devices,
which is basically the minimum distances from the root indicator to
all other devices. The distance to itself is zero, the distance to the
direct neighbors is one, the distance to the neighbors of the neigh-
bors is two and so forth. This reflects the (partial) ordering in which
the devices should be processed. Second, for each device, first try
to place it on the next empty unit and if this is unsuccessful try the
already used units in descending order. Third, try different root in-
dicators, and consequently different topological orderings, and limit
search for each trial. The intuition behind that is that not all root in-
dicators are equally good to start search from.

The input comprises of a set of egde(i, s) facts where i takes the
numerical identifier of an indicator and s takes the identifier of a
sensor. Additionally the input includes a fact ucap(x) with x > 0
that defines the unit capacity (UCAP) and a fact iucap(y) with y > 0
that defines the inter-unit capacity (IUCAP).

For the code snippets given in the remainder of this section we
use the standard notation of logic programming. In particular, left-
implication← is represented as ’:-’.

In order to produce explicit indicator and sensor information the
following lines of code are used:

sensor(S):-edge(I,S).
indicator(I):-edge(I,S).
numIndicators(N):-N=#count{I:indicator(I)}.
numSensors(N):-N=#count{S:sensor(S)}.

The number of indicators (numIndicators) respectively sensors
(numSensors) are calculated by means of the #count aggregate
literal provided by Clingo.

10 Further information can be found at www.mat.unical.it/aspcomp2014/
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We restrict the number of units (numUnits) available for
a solution to the theoretical lower bound, i.e. numUnits =⌈

max(numIndicators,numSensors)
UCAP

⌉
:

max(M):-numIndicators(E),numSensors(F),
M=#max(E;F).

numUnits(N):-max(M),ucap(C),N=(M+1)/C.
unit(Z):-numUnits(N),1<=Z,Z<=N.

For each indicator i there is a CSP variable device(i, 1) and for
each sensor s there is a CSP variable device(s, 2). This way it is
also possible to refer to the array of all CSP device variables as
device(all, all), to only the indicator variables as device(all, 1) and
to the sensor variables as device(all, 2) which will be useful later.
The value range for these CSP variables is [1..numUnits]. Further-
more, the variables get a priority defining the topological order in
which they are labeled by ASCASS:

cspvar(device(I,1),1,N,P):-
numUnits(N),iPriority(I,P).

cspvar(device(S,2),1,N,P):-
numUnits(N),sPriority(S,P).

The calculation of the priorities is explained in detail below.
In order to assure UCAP, for each unit u there are two counting

variables ci(u) and cs(u). These variables can take values in the
range [0..UCAP ]. Furthermore, for each unit u there are two count
global constraints counting the number of indicator respectively sen-
sor variables taking the value u:

cspvar(ci(U),0,C):-ucap(C),unit(U).
cspvar(cs(U),0,C):-ucap(C),unit(U).
cspglobal(device(all,1),count,ci(U),U):-

unit(U).
cspglobal(device(all,2),count,cs(U),U):-

unit(U).

In order to capture which unit u1 is connected to which unit
u2 there are numUnits × numUnits many CSP variables (i.e.
conn(U1, U2)). The variables can take values in the range [0..1]
if u1 <> u2. Otherwise, the variables’ ranges consists of only a
single value, i.e. [1..1]. This is because in our model each unit u is
always connected to itself. Furthermore, there is a constraint assuring
symmetry, i.e. if u1 is connected to u2 also u2 is connected to u1:

cspvar(conn(U1,U2),0,1):-unit(U1),unit(U2),
U1<>U2.

cspvar(conn(U,U),1,1):-unit(U).
cspconstr(conn(U1,U2),eq,conn(U2,U1)):-

unit(U1),unit(U2),U1<U2.

For summing up how many units are connected to a unit u we
make use of the global sum constraint. The used summing variables
can hereby take values in the range [1..IUCAP + 1] as every unit is
also connected to itself:

cspvar(sumconns(U),1,K+1):-iucap(K),unit(U).
cspglobal(conn(U,all),sum,sumconns(U)):-

unit(U).

In order to make the summing variables and constraints take ef-
fect, it must be assured that any connection variable conn(u1, u2)
is set to one whenever there is an edge(i, s) in the input so that

device(i, 1) = u1 and device(s, 2) = u2. Following the approach
of [6], this is implemented by means of the global element con-
straint. Given an array of CSP variables arr, an index i and a value
v, an element constraint assures that the ith variable in arr is equal
to v. In our case, for each edge(i, s) in the input there is such a
global constraint setting the appropriate connection variable within
conn(all, all) to one:

cspglobal(conn(all,all),element,index(I,S),1)
:-edge(I,S).

As the element constraint cannot directly handle multi-dimensional
arrays, the respective index is calculated as index(i, s) =
(device(i, 1) − 1) × numUnits + device(s, 2). The formulation
with constraints is straightforward.

The priorities for the device variables (i.e. device(i, 1) and
device(s, 2) are based on a topological ordering of the devices.
Given the layer of a sensor or indicator whereby the root of the topo-
logical graph is at layer zero, the priority is higher the lower the layer
is:

iPriority(I,P):-indicatorLayer(I,L),P=9999-L.
sPriority(S,P):-sensorLayer(S,L),P=9999-L.

The effect is that, given a root indicator, ASCASS first tries to
label the root indicator, then the neighbors of the root indicator, then
the neighbors of the neighbors, and so on. In our implementation a
choice rule is used to express that there is exactly one distinguished
indicator that acts as root. This indicator is always placed at the first
unit:

1{root(I):indicator(I)}1.
cspconstr(device(I,1),eq,1):-root(I).

The choice rule 1{root(I) : indicator(I)}1 produces one answer
set for each root indicator and asserts a root(i) fact.

For calculating the actual layers, we first calculate the minimum
distances to the root whereas root indicator has a zero distance to
itself11:

indicatorDist(I0,0):-root(I0).
sensorDist(S,D+1):-indicatorDist(I,D),

edge(I,S),numDevices(M),D<M.
indicatorDist(I,D+1):-sensorDist(S,D),

edge(I,S),numDevices(M),D<M.
numDevices(N):-numIndicators(E),numSensors(F),

N=E+F.

The layers are calculated by using the #min aggregate literal
from Clingo:

indicatorLayer(I,Dmin):-indicator(I),
Dmin=#min{D:indicatorDist(I,D)}.

sensorLayer(S,Dmin):- sensor(S),
Dmin = #min{D:sensorDist(S,D)}.

First to try to place devices on unused units and, only if not suc-
cessful, on used units in descending order can be expressed in AS-
CASS by means of preferred values:

cspprefer(device(I,1),lteq,nextUnit):-
indicator(I).

cspprefer(device(S,2),lteq,nextUnit):-
sensor(S).

11 In order to make grounding safe, we have to limit the maximum possible
distance, which is equal to the total number of devices.
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The CSP variable nextUnit points to the next unused unit, which
is the current unit plus one12:

cspvar(curUnit,1,N):-numUnits(N).
cspvar(nextUnit,1,N+1):-numUnits(N).
csparith(curUnit,plus,one,eq,nextUnit).

For the calculation of the current unit, i.e. the highest number
taken by some device(i, 1) or device(s, 2) variable, the globalmax
constraint is used:

cspglobal(device(all,all),max,curUnit).

As ASCASS uses the lower bound of variables for calculating
the preferred values, each device variable is first tried to be bound
to values lower than or equal to the lower bound of nextUnit =
curUnit+ 1 in descending order.

In order to control how many units are maximally tried per device
variable, the search is pruned such that only the next unit and a lim-
ited number of already used units can be tried before backtracking is
triggered. In our implementation we use the following statement for
only trying the next, the current and the last unit:

cspsearch(limited,3).

We furthermore restrict the maximum CSP search time for each
call of the CP solver in order to try different start indicators:

csptimeout(300).

For making ASCASS respect the problem-
dependent selection strategies, cspvarsel(priority) and
cspvalsel(device(all, all), indomainPreferred) must be
included. Thus, the concepts of QuickPup can be fully expressed in
a declarative way by ASCASS. To the best of our knowledge, this is
not possible within any other ASP or CASP approach.

4.2 Evaluation
We tested the ASP solver Clingo 4 and the CASP solvers ASCASS,
Clingcon and Ezcsp on the PUP benchmark suite used in [2]13.
Clingo was tested using the PUP encoding proposed in [2]14. The
tests were run on a 3.2 Ghz machine with 64 GByte of RAM, assur-
ing that the grounding bottleneck does not play a role for the tested
instances15 and performance can be attributed to the search phase.

In the Clingcon model, problem-dependent CSP variable selec-
tion, value selection or pruning strategies cannot be exploited. For
Ezcsp, it is possible to express the topological variable orderings sim-
ilar to ASCASS. However, there are no means for pruning search or
problem-dependent value strategies.

Table 1 depicts how many instances of each type in the bench-
mark suite could be solved by the different approaches within a 1000
seconds time frame. Clingo using VSIDS heuristic peformed very
well on the benchmark suite showing once again that the conflict-
driven search techniques employed by Clingo are quite powerful.
Also Ezcsp was able to solve some instances. Using other built-in

12 Within the constraint, the helping variable cspvar(one, 1, 1) is used as
arithmetic constraints only accept variables in ASCASS.

13 Encodings and benchmark instances can be found at
http://isbi.aau.at/hint/ascass

14 The ’new’ encoding provided by the ASP competition 2014 was found to
be inconsistent as it also produces answer sets for unsatisfiable instances.

15 The biggest grounding in the ASP model was ∼ 12 GByte.

# Clingo ASCASS Clingcon Ezcsp
double(IUCAP=2) 10 2 10 0 2
doublev(IUCAP=2) 6 3 6 0 0
triple(IUCAP=2) 3 2 3 0 2
triple(IUCAP=4) 7 6 6 0 3
grid(IUCAP=4) 10 10 10 0 0
total 36 23 35 0 7

Table 1. Solved instances whithin 1000 seconds

heuristics did not result in better performance. Clingcon was not able
to solve a single instance. In the contrary, ASCASS was able to solve
all but one instances within time limits. We want to point out that
only optimal solutions (i.e. minimum number of units) were allowed
for easing the grounding bottleneck of conventional ASP. Increasing
the number of allowed units in a solution would increase grounding
size for ASP significantly. In the cases of ASCASS and Ezcsp, in-
creasing the number of allowed units would not affect the grounding
size as the number of allowed units is captured by the upper bounds
of the CSP variables.

Furthermore, we want to make clear that the superior performance
of ASCASS can be attributed to the inclusion of the QuickPup strate-
gies. This was crosschecked by removing the heuristic parts from the
ASCASS problem encodings. It is to be noted that QuickPup origi-
nally was designed for producing only near-optimal solutions. How-
ever, the concepts of QuickPup obviously also work well for finding
optimal solutions.

5 Conclusions
Elaborated engineering and sophisticated general problem-
independent heuristics have significantly improved the runtime
performance of general problem-solvers. However, it is a well
known observation that general problem-solvers which are applied
toNP-hard problems deliver satisfiable performance up to a certain
size of the problem instances. For many problems special heuristics
were developed which resulted in exceptional runtime improvements
compared to state-of-the-art general problem-solvers.

With ASCASS we provide a constraint answer set programming
solver, which allows the declarative formulation of problem-specific
heuristics. In particular, we exploit ASP to generate problem-specific
heuristics for CSP including variable and value selection as well
as pruning strategies. By employing the real-world Partner Units
Problem, which constitutes one of the hardest benchmark problems
of the ASP competitions, we exemplified an encoding in ASCASS
that includes both the declarative description of the problem and
an effective heuristic for solving the problem. By this encoding we
could demonstrate that the non-trivial problem-dependent QuickPup
heuristic can be expressed quite naturally in ASCASS. Due to this
heuristic, which cannot be expressed by any other ASP or CASP
system, ASCASS clearly outperforms state-of-the-art ASP or CASP
systems on the tested instances.
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