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A Dynamic Intelligence Test Framework for Evaluating
AI Agents

Nader Chmait and Yuan-Fang Li and David L. Dowe and David G. Green1

Abstract. In our recent work on the measurement of (collective) in-
telligence, we used a dynamic intelligence test to measure and com-
pare the performances of artificial agents. In this paper we give a de-
tailed technical description of the testing framework, its design and
implementation, showing how it can be used to quantitatively eval-
uate general purpose, single- and multi-agent artificial intelligence
(AI). The source code and scripts to run experiments have been re-
leased as open-source, and instructions on how to administer the test
to artificial agents have been outlined. This will allow evaluating new
agent behaviours and also extending the scope of the test. Alterna-
tive testing environments are discussed along with other consider-
ations relevant to the robustness of multi-agent performance tests.
The intuition is to encourage people in the AI community to quanti-
tatively evaluate new types of heuristics and algorithms individually
and collectively using different communication and interaction pro-
tocols, and thus pave the way towards a rigorous, formal and unified
testing framework for general purpose agents.

1 INTRODUCTION
One of the major research questions at the present state of artificial
intelligence is: how smart groups of artificial agents are compared
to individual agents? Measuring machine intelligence is a complex
topic that has been tackled by a large number of theories and is not
yet fully understood as discussed in [24], [22, Section 2] and [21,
Chapter 5]. Besides that, the design and study of agent systems has
widely expanded in the last few years as agent models are increas-
ingly being applied in a wide range of disciplines in the purpose of
modelling complex phenomena.

In our previous work on the measurement of collective intelli-
gence [9, 7, 8] we identified a range of factors that hinder the effec-
tiveness of individual and interactive AI agents. This was achieved
by implementing a dynamic intelligence test based on the litera-
ture of artificial general intelligence and algorithmic information the-
ory [23, 22, 25]. We have used it to measure and compare the perfor-
mance of individual, and collectives of, artificial agents across sev-
eral environmental and interactive settings.

In this paper we give detailed technical description of our dynamic
intelligence testing framework. We discuss its design and implemen-
tation and show how it can be used to quantitatively evaluate general
purpose AI individually, and also collectively using various interac-
tion protocols. As anticipated in our recent work [9], the source code
and scripts to run experiments have been released as open-source,
and instructions on how to administer the test to artificial agents have
been outlined. Consequently, it is now possible to evaluate new agent
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behaviours, and easily extend the scope of the evaluation framework.
The intuition is to encourage people in the AI community to evaluate
new types of heuristics and algorithms in individual and collective
scenarios using different communication and interaction protocols.
This will hopefully pave the way towards a rigorous, formal and uni-
fied testing framework for general purpose artificial agents.

2 BACKGROUND

Perhaps a good start to understand the history of machine intelligence
would be to take a look back at the imitation game [43] proposed by
Turing in the 1950s where the idea is to have one or more human
judges interrogating a program through an interface, and the program
is considered intelligent if it is able to fool the judges into thinking
that they are interrogating a human being. While this was once re-
garded as an intelligence test for machines, it has limitations [34]
and is mainly a test of humanness. The machine intelligence quo-
tient (MIQ) using fuzzy integrals was presented in [1] in 2002. How-
ever, determining a universal intelligence quotient for ranking artifi-
cial systems is not very practical and is almost unmeasurable due to
the vast non-uniformity in the performances of different types of arti-
ficial systems. Several studies [5, 11, 12, 14, 25, 36] have investigated
the relevance of compression [11, Sections 2 and 4], pattern recogni-
tion, and inductive inference [13, Section 2] to intelligence. Shortly
after [5, 11, 12, 25] came the C-test [19] which was one of the first
attempts to design an intelligence test consisting of tasks of quantifi-
able complexities. However, the test was static (non-dynamic) and
it did not fully embrace the vast scope implicit in the notion of in-
telligence. In 2007, Legg and Hutter proposed a general definition
of universal (machine) intelligence [30], and three years later a test
influenced by this new definition, namely the Anytime Universal In-
telligence Test, was put forward by Hernandez-Orallo and Dowe [22]
in order to evaluate intelligence. The test was designed to be admin-
istered to different types of cognitive systems (human, animal, arti-
ficial), and examples environment classes illustrating the features of
the test were also suggested in [22].

To the best of our knowledge, further to single agent intelli-
gence [1, 19, 30, 22], no formal intelligence tests were developed
in the purpose of quantifying the intelligence of groups of interactive
agents against isolated (non-interactive) agents - which is one of the
motivations behind this work. Yet, before we proceed with the de-
scription of our work, one question that might come to a reader’s
mind is: can’t we simply evaluate and compare artificial systems
over any given problem or environment from the literature? There
are several reasons why we can’t do that, most of them were studied
and examined in [22]. We briefly summarise some of these princi-
ples. Firstly, there is a risk that the choice of the environment used



for evaluation is biased, and that it favours particular types of agents
while it is unsuitable for others. Furthermore, the environment should
handle any level of intelligence in the sense that dull or brilliant, and
slow or fast systems can all be adequately evaluated. The test should
return a score after being stopped at any time-period, short or long.
Besides, not every evaluation metric is a formal intelligence test or
even at a minimum, a reliable performance metric. For instance, the
testing environment should be non-ergodic but reward-sensitive with
no sequence of actions leading to heaven (always positive) or hell
(always negative) scoring situations, and balanced [20] in the sense
that it must return a null reward to agents with a random behaviour,
etc.

Although the principle advantage of this work is measuring the
intelligence of artificial agents, the outcome also has implications
for agent-based systems. This is because it provides an opportunity
to predict the effectiveness (and expected performance) of existing
artificial systems under different collaboration scenarios and problem
complexities. In other words, it’s one way of looking at (quantifying)
the emergence of intelligence in multi-agent systems.

We begin by introducing our methodology for evaluating intelli-
gence using an agent-environment architecture (Section 3). We then
re-introduce and elaborate on the Λ∗ (Lambda Star) testing environ-
ment structure described in [9] (Section 4). We discuss the test imple-
mentation, its setup and parameters, in Section 5 and also give exam-
ples of how to define and evaluate new agent behaviours over the pro-
posed testing environment. We then discuss in Section 6 some alter-
native testing environments that might be useful to quantify the per-
formance of artificial agents and raise some arguments and consid-
erations relevant to the robustness of multi-agent performance tests.
We conclude in Section 7 with a brief summary.

3 AGENT-ENVIRONMENT FRAMEWORK

A common setting in most approaches to measuring intelligence is to
evaluate a subject over a series of problems of different complexities
and return a quantitative measure or score reflecting the subject’s per-
formance over these problems [22]. In artificial systems, the agent-
environment framework [30] is an appropriate representation for this
matter. For instance, this framework allows us to model and abstract
any type of interactions between agents and environments. It also
embraces the embodiment thesis [2] by embedding the agents in a
flow of observations and events generated by the environment.

Here we define an environment to mean the world where an agent
π, or a group of agents {π1, π2, . . . , πn}, can interact using a set
of observations, actions and rewards [30]. The environment gener-
ates observations from the set of observations O, and rewards from
R ⊆ Q, and sends them to all the agents. Then, each agent per-
forms actions from a limited set of actions A in response. An itera-
tion or step i stands for one sequence of observation-action-reward.
An observation at iteration i is denoted by oi, while the correspond-
ing action and reward for the same iteration are denoted by ai and
ri respectively. The string o1a1r1o2a2r2 is an example sequence of
interactions over two iterations between one agent and its environ-
ment. An illustration of the agent-environment framework is given
in Figure 1. We define the multi-agent-environment framework as
an extension of the above, such that oi,j , ai,j and ri,j are respec-
tively the observation, action and reward for agent πj at iteration i.
The order of interactions starts by the environment sending observa-
tions to all the agents at the same time. Then, the agents interact and
perform corresponding actions, and finally the environment provides
them back with rewards. For instance, the first interaction of agents

Agent Environment

Observation

Reward

Action

Figure 1: Agent-environment framework [30]

π1, π2 in the multi-agent-environment setting, denoted by o1a1r1, is
equivalent to o1,1o1,2a1,1a1,2r1,1r1,2.

4 EVALUATING INTELLIGENCE

In order to assess the performances of AI agents, whether in isola-
tion or collectively, we needed an environment over which we can
run formal intelligence tests (of measurable complexities) on artifi-
cial agents using the recently described framework. Hence, we devel-
oped in our recent work [9] an extension of the Λ environment [28,
Sec. 6][22] - one of the environment classes implementing the theory
behind the “Anytime Universal Intelligence Test” [22].

One of the reasons for selecting the Anytime Universal Intelli-
gence Test and the Λ environment was because they are derived
from formal and mathematical backgrounds that have been practi-
cally used to evaluate diverse kinds (including machines) of enti-
ties [26, 7, 8, 27]. More importantly, our selection embraces all of the
concerns we raised in the introduction regarding the measurement of
intelligence, thus providing us with a formal, anytime, dynamic and
unbiased setting [22] to quantitatively evaluate the effectiveness of
artificial agents.

4.1 The Λ∗ (Lambda Star) Environment

We re-introduce the Λ∗ (Lambda Star) environment class used in [9]
which is an extension of the Λ environment [22, Sec. 6.3][28] that
focuses on a restricted - but important - set of tasks in AI.

The general idea is to evaluate an agent that can perform a set
of actions, by placing it in a grid of cells with two special objects,
Good (⊕) and Evil (	), travelling in the space using movement pat-
terns of measurable complexities. The rewards are defined as a func-
tion of the position of the evaluated agent with respect to the posi-
tions of ⊕ and 	.

4.1.1 Structure of the test

An environment space is an m-by-n grid-world populated with ob-
jects from Ω = {π1, π2, . . . , πx,⊕,	}, the finite set of objects. The
set of evaluated agents Π ⊆ Ω is {π1, π2, . . . , πx}. Each element
in Ω can have actions from a finite set of actions A ={up-left, up,
up-right, left, stay, right, down-left, down, down-right}. All objects
can share the same cell at the same time except for⊕ and	 where in
this case, one of them is randomly chosen to move to the intended cell
while the other one keeps its old position. In the context of the agent-
environment framework [30], a test episode consisting of a series of
ϑ interactions oiairi such that 1 ≤ i ≤ ϑ, is modelled as follows:

1. the environment space is first initialised to an m-by-n toroidal
grid-world, and populated with a subset of evaluated agents from
Π ⊆ Ω, and the two special objects ⊕ and 	,
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2. the environment sends to each agent a description of its range of 1
Moore neighbour cells [17, 48] and their contents, the rewards in
these cells, as an observation,

3. the agents (communicate/interact and) respond to the observations
by performing an action in A, and the special objects perform the
next action in their movement pattern,

4. the environment then returns a reward to each evaluated agent
based on its position (distance) with respect to the locations of
the special objects,

5. this process is repeated again from point #2 until a test episode is
completed, that is when i = ϑ.

The Λ∗ environment consists of a toroidal grid space in the sense
that moving off one border makes an agent appear on the opposite
one. Consequently, the distance between two agents is calculated us-
ing the surpassing rule (toroidal distance) such that, in a 5-by-5 grid
space for example, the distance between cell (1, 3) and (5, 3) is equal
to 1 cell. An illustration of the Λ∗ environment is given in Figure 2.

	

⊕

π1

π2

π3

π4

π5 π6

πi agent; 99K path of 	; · · · > path of ⊕;
rewards: -1.0←�����→+1.0

Figure 2: A diagrammatic representation of a sample 10-by-10 Λ∗

environment space used in [9] to evaluate the performance of (groups
of interactive) artificial agents. The figure shows the objects in Ω, the
paths of the two special objects and an illustration of the (positive
and negative) rewards in the environment.

4.1.2 Rewarding function

The environment sends a reward to each evaluated agent from the set
of rewards R ⊆ Q where −1.0 ≤ R ≤ 1.0. Given an agent πj , its
reward rij ∈ R at some test iteration i can be calculated as:

rij ←
1

d(πj ,⊕) + 1
− 1

d(πj ,	) + 1

where d(a, b) denotes the (toroidal) distance between two objects
a and b. Recall that an agent does not have a full representation of
the space and only receives observations of its (range of 1 Moore)
neighbourhood [17, 48]. Therefore, we constrain the (positive and
negative) rewards an agent receives from the environment (as a func-
tion of its position with respect to ⊕ and 	 respectively) as fol-
lows: the positive reward πj receives at each iteration is calculated as
1/(d(πj ,⊕) + 1) if d(πj ,⊕) < 2, or 0 otherwise. Likewise its neg-
ative reward at that iterations is−1/(d(πj ,	) + 1) if d(πj ,	) < 2,

or 0 otherwise. Its total reward, rij at iteration i, is the sum of its
positive and negative rewards received at that iteration.

4.2 Algorithmic Complexity
We regard the Kolmogorov complexity [32]2 of the movement pat-
terns of the special objects as a measure of the algorithmic com-
plexity K(µ) of the environment µ in which they operate. For in-
stance, a Λ∗ environment of high Kolmogorov complexity is suffi-
ciently rich and structured to generate complicated (special object)
patterns/sequences of seeming randomness.

The Kolmogorov complexity [32] (Definition 1) of a string x is
the length of the shortest program p that outputs x over a reference
(Turing) machine U .

Definition 1 Kolmogorov Complexity

KU (x) := min
p : U(p)=x

l(p)

where l(p) denotes the length of p in bits, andU(p) denotes the result
of executing p on a Universal Turing machine U .

Assume, for example, that the special object ⊕ moves in a 5-by-5
grid space. It has an ordered (and repeating) movement pattern trav-
elling between cells with indices: 7, 3, 4, 9 and 8 (grayed cells ap-
pearing in Figure 3) such that, in a 25-cell grid, indices 1, 2 and 6
correspond respectively to cells with coordinates (1, 1), (1, 2) and
(2, 1) and so on (Figure 3). Also assume that the number of time
steps in one test episode ϑ = 20. Following algorithmic informa-
tion theory, namely Kolmogorov complexity, we consider the al-
gorithmic complexity of the environment K(µ) in which ⊕ oper-
ates as the length of the shortest program that outputs the sequence
73498734987349873498 (of length ϑ). We measure the Lempel-Ziv
complexity [31] of the movement patterns as an approximation to
K(µ) as suggested in [31, 15].

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3: A conceptual representation of a 5-by-5 grid space and its
cell indices ranging from 1 to 25.

Note that, at one test episode, the movement patterns of the special
objects ⊕ and 	 are different but (algorithmically) equally complex
making sure the rewards are balanced [20]. The recurrent segment
of the movement pattern is at least of length one and at most bϑ/2c,
cyclically repeated until the final iteration (ϑ) of the test.

4.3 Search Space Complexity
We measure the search space complexity H(µ) as the amount of
uncertainty in µ, expressed by Shannon’s entropy [38]. Let N be

2 The concept of Kolmogorov complexity or algorithmic information theory
(AIT) is based on independent work of R. J. Solomonoff [39, 40, 41] and
A. N. Kolmogorov [29] in the first half of the 1960s, shortly followed by
related work by G. J. Chaitin [3, 4]. The relationship between this work and
the Minimum Message Length (MML) principle (also from the 1960s) [45]
is discussed in [46][44, Chapter 2 and Section 10.1][10, Sections 2 and 6].
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the set of all possible states of an environment µ such that a state
sµ, is the set holding the current positions of the special objects
{⊕,	} in the m-by-n space. Thus the number of states |N | in-
creases with the increase in the space dimensions m and n, and it
is equal to the number of permutation m×nP2 = (m×n)!

(m×n−2)!
. The

entropy is maximal at the beginning of the test as, from an agent’s
perspective, there is complete uncertainty about the current state of
µ. Therefore p(sµ) follows a uniform distribution and is equal to
1/|N |. Using log2 as a base for our calculations, we end up with:
H(µ) = −∑

sµ∈N p(sµ) log2 p(sµ) = log2 |N | bits.
Algorithmic and search space complexities could be combined

into a higher level complexity measure of the whole environment.
This new measure can be very useful to weight test environments
used for the measurement of universal intelligence. Nonetheless,
having two separate measures of complexity also means that we can
quantify the individual influence of each class (or type) of complexity
on the performance of agents. This approach appears to be particu-
larly useful for evaluating the factors influencing the performance of
agent collectives as these collectives can exhibit different behaviors
in response to changes in the measures of each class of environment
complexity [9, Section 7].

Overall, we appraise the Λ∗ environment, at a minimum, as an ac-
curate measure of the subject’s ability of performing over a class of:
inductive-inference, compression, and search problems, all of which
are particularly related to intelligence [25, 14]. Note, however, that
we will use the term intelligence to describe the effectiveness or ac-
curacy of an evaluated agent over this test.

4.4 Intelligence Score
The metric of (individual agent) universal intelligence defined in [22,
Definition 10] was extended into a collective intelligence metric
(Definition 3) returning an average reward accumulation per-agent
measure of success (Definition 2) for a group of agents Π, over a
selection of Λ∗ environments (Section 4.1).

Definition 2 Given a Λ∗ environment µ and a set of (isolated or in-
teractive) agents Π = {π1, π2, . . . , πn} to be evaluated, the (av-
erage per-agent per-iteration) reward R̃Π,µ,ϑ of Π over one test

episode of ϑ-iterations is calculated as: R̃Π,µ,ϑ =
∑n
j=1

∑ϑ
i=1 r

i
j

n×ϑ .

Definition 3 The (collective) intelligence of a set of agents Π is de-
fined as: Υ(Π) = 1

ω

∑
µ∈L R̃Π,µ,ϑ, where L is a set of ω environ-

ments {µ1, µ2, . . . , µω} such that ∀µt, µq ∈ L : H(µt) = H(µq),
and ∀µi ∈ L,K(µi) is extracted from a range of (pattern) algorith-
mic complexities in ]1,Kmax].

Note the use of the same search space complexity, but different
algorithmic complexities, in the intelligence measure defined in Def-
inition 3. The reason behind this is to allow for running controlled
experiments to test against the influence each class of complexity
has on intelligence separately in a similar manner to [9, Sections 7.3
and 7.6].

5 IMPLEMENTATION DETAILS AND
EXPERIMENTAL PROTOCOL

In this section we discuss some important test functionalities and
experimental parameters, and give technical description of example
agent behaviours showing how they can be practically evaluated over
the Λ∗ environment.

5.1 Setup and Test Parameters
The intelligence test was implemented in C++, and the source code
and scripts to run experiments have been released as open-source [6],
with good efforts made to facilitate their re-usability.

Once the test is compiled and run, a new experiment is initiated.
The number of test episodes ω, as well as the number of iterations in
each episode, for that experiment can be entered into the command-
line. Setting ω to 1000 episodes (runs) usually records a very small
standard deviation between the test scores3. The size of the environ-
ment (and thus the search space uncertainty H(µ)) as well as the
number of agents to be evaluated can also be selected prior to each
experiment. The robustness of the test scores depends on the size of
the environment so it might be desirable to select a larger value of ω
for larger environment spaces.

In each episode, agents are administered over different pattern
complexities K(µ) automatically generated by the test, such that
K(µ) ∈ [2, 23], where a K(µ) of 23 corresponds to, more or less,
complex pattern prediction or recognition problems. Moreover, in
each episode, the evaluated agents are automatically re-initialised to
different spatial positions in the environment. At the end of each ex-
periment the (intelligence) scores (in the range [−1.0, 1.0]) of the
evaluated agents and collectives, averaged over all test episodes, are
displayed on the screen and also saved to file.

Agents can be evaluated in isolation as well as collectively follow-
ing the agent environment framework described in Section 3. For in-
stance, the test provides us with three key methods implementing the
(multi) agent-environment framework . Let µ̃ be an instance of the
test environment Λ∗ and Π a set of agents to be evaluated. The meth-
ods sendObservations(Π, k) and sendReward(Π, i) could be in-
voked on µ̃ at each iteration i of the test in order to send observations
and rewards respectively to all agents in Π, where k ∈ N+ refers to
the kth-Moore neighbourhood selected as the evaluated agents’ ob-
servation range. At each iteration of the test, after receiving an obser-
vation, each agent in Π invokes its own method performAction()
which returns a discrete action in the range [1, 9], such that an ac-
tion in {1, 2, 3, 4, 5, 6, 7, 8, 9} maps position-wise to {up-left, up,
up-right, left, stay, right, down-left, down, down-right}. The selected
action is subsequently used to update the agent’s position in the en-
vironment.

5.2 Defining Agent Behaviours
We have defined an abstract class Agent with many declared func-
tionalities that will come out to be essential for implementing and
evaluating new agent behaviours over the Λ∗ environment.

New isolated (non-interactive) agent behaviours can be introduced
as (one of the) subclasses of Agent, providing implementations for
its abstract methods as necessary. Interactive agent behaviours, on
the other hand, are polymorphic classes redefining and extending the
behaviour of their isolated agent’s superclass.

Homogeneous collectives of interactive agents are aggregations
of two or more interactive agents of the same behaviour (class). A
simplified UML class diagram illustrating the relationships between
isolated and collective agent behaviours is illustrated in Figure 4.
Likewise, heterogeneous collectives of agents can be defined as ag-
gregations of two or more interactive agents of different behaviours
(classes). Examples of (isolated and collective) agent behaviours are
described in the next two subsections.

3 Usually a standard deviation of less than 0.001 is recorded between identi-
cal experiments.
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«abstract»
Agent

position
perform action

Random agent

perform action

Local search agent

perform action

2...n

belongs to

Local search collective

Interactive Local search agent

perform action
communicate

Figure 4: A simplified UML class diagram illustrating the relation-
ships between some isolated and collective agent behaviours.

5.2.1 Isolated agent behaviours

In this subsection, we give a description of some agent behaviours4

which could be evaluated over the Λ∗ environment.
Local search agent: given an agent πj , we denote by cij and r(cij)

the cell where πj is located at iteration i, and the reward in this cell
respectively. LetN i

j andR(N i
j) denote respectively the set of neigh-

bour cells of agent πj (including cij) at iteration i, and the reward
values in these cells. R(cij , a) is a function that returns the reward
agent πj gets after performing action a ∈ A when it is in cell cij .
The behaviour of a local search agent πj at iteration i is defined as
follows:

aij ← arg max
a∈A

R(cij , a).

If all actions return an equivalent reward, then a random action in A
is selected.

Q-learning agent: in this reinforcement learning behaviour, the
evaluated Q-learning [47] agent learns using a state-action pair qual-
ity function, Q : S × A → R, in order to find the action-selection
policy that maximises its rewards. Each test episode of ϑ iterations is
equivalent to one training session. Because the testing environment
is dynamic, we define a Q-learning state si ∈ S that an agent πj oc-
cupies at iteration i as the pair {cij , i} consisting of πj’s current cell
position cij and the current iteration i, thus leading to a total number
of states |S| = m × n × ϑ, in a m-by-n environment space, over
one test episode. The Q-Learning behavior over one training session
is illustrated in Algorithm 1. We use the notations from the previous
(Local search agent) paragraph. After training is complete, the eval-

4 Several agent behaviours (isolated and collectives) other than those dis-
cussed in this paper have also been implemented and are made available
in [6] for both testing and modification.

Algorithm 1 Q-Learning agent behavior over one training session.

1: Initialize: learning rate α and discount factor γ.
2: Begin
3: for iteration i← 0 to ϑ− 1 do . loop over iterations
4: si ← {cij , i} . set current state
5: execute aij ← arg maxa∈AQ(si, a) . perform action

6: si+1 ← {ci+1
j , i+ 1} . set new (post-action) state

7:
Q(si, a

i
j) = Q(si, a

i
j)+ . update Q-table

α

[
R(cij , a

i
j) + γmax

a∈A
Q(si+1, a)−Q(si, a

i
j)

]

8: end for
9: End

uated agent simply travels between states by performing the actions
with the highest reward values recorded in its Q-table.

Expert agent: an expert or oracle agent knows the future move-
ments of the special object ⊕. At each step i of an episode this agent
approaches the subsequent i + 1 cell destination of ⊕ seeking max-
imum payoff. However, if ⊕ has a constant movement pattern (e.g.,
moves constantly to the right) pushing it away from the oracle, then
the oracle will move in the opposite direction in order to intercept
⊕ in the upcoming test steps. Once it intercepts ⊕, it then continues
operating using its normal behaviour.

Random agent: a random agent randomly choses an action from
the finite set of actionsA at each iteration until the end of an episode.

The scores of the random and oracle agents could be used as a
baseline for the intelligence test scores of artificial agents, where a
random agent is used as a lower bound on performance while the
expert agent is used as an upper bound.

5.2.2 Agent collectives

The isolated agents could also be evaluated collectively (in groups)
using a communication protocol to interact between one another. We
propose a simple algorithm for enabling communication between
local search agents using stigmergy [16] which is a form of indi-
rect communication. For instance, we let local search agents induce
fake rewards in the environment, thus indirectly informing neighbour
agents about the proximity of the special objects. Note that fake re-
wards will not affect the score (real reward payoff) of the agents.

Let R̂(N i
j) denote the set of fake rewards in the neighbour cells

of agent πj (including cij) at iteration i, and R̂(cij , a) is a function
returning the fake reward agent πj receives after performing action
a ∈ A when it is in cell cij at iteration i. Fake rewards are induced
in the environment according to Algorithm 2. Each agent proceeds

Algorithm 2 Stigmergic or indirect communication: fake reward
generation over one iteration i of the test.

1: Input: Π (set of evaluated agents), 0 < γ < 1 (fake reward discounting
factor), a test iteration i.

2: Initialize: ∀πj ∈ Π: R̂(N i
j)← 0.0.

3: Begin
4: for j← 1 to |Π| do . loop over agents
5: rmax ← maxR(N i

j)

6: rmin ← minR(N i
j)

7: r̂ ← γ · rmax + (1− γ) · rmin
8: R̂(N i

j)← R(N i
j) + r̂

9: end for
10: End

by selecting an action by relying on fake rewards this time instead of
the real rewards, as follows: aij ← arg max

a∈A
R̂(cij , a). If all actions
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are equally rewarding, then a random action is selected. Thereupon,
we expect local search agents using stigmergy to form non-strategic
coalitions after a few iterations of the test as a result of tracing the
most elevated fake rewards in the environment.

In the case of Q-learning collectives, the agents in the collective
could share and update a common Q-table, and thus all learn and
coordinate simultaneously.

5.3 Modularity and Code Re-use
We have provided a large set of functionalities which might come
in handy when amending and extending the current scope of the
test, and for defining new agent behaviours to be evaluated. These
functionalities can be found in the utility class General in [6] un-
der the directory /src/General.cpp. Moreover, we have used
UnitTest++ [33], a lightweight unit testing framework for C++ over
Windows, in order to allow for easy defect isolation, assist in vali-
dating existing and newly implemented functionality, and encourage
code review.

5.4 Experimental Demonstration
An example of an executable test experiment can be found in the
main method in [6]. Similar types of experiment were conducted in
our previous work [9] in order to identify and analyse factors influ-
encing the intelligence of agent collectives. For instance, using the
Λ∗ environment, one could evaluate several types of multi-agent sys-
tems and quantitatively measure how:

• the complexity of the environment (its uncertainty and algorithmic
complexity),

• the communication protocol used between the agents,
• the interaction time,
• and the agents’ individual intelligence

all reflect (individually but also jointly) on the collective performance
of the system. This can be easily achieved by running a series of
controlled experiments in which the values (of one or more) of the
above factors are altered.

6 ALTERNATIVE ENVIRONMENTS AND
FURTHER CONSIDERATIONS

As mentioned in Section 4.1, the Λ∗ (Lambda Star) environment
focuses on a restricted set of canonical tasks particularly relevant to
the intelligence of AI agents. Nonetheless, the generalisation of these
canonical tasks does not account for a range of multiagent problems.
In particular, the tasks to perform in the Λ∗ environment are a nice
abstraction of two problems in the literature (among others): search-
ing for a moving target while avoiding injury, and nest selection when
there is one and only one best nest. But these tasks do not cover other
important multi-agent problems like those that require coordination
(e.g., lifting and moving a table).

6.1 Measuring Multi-agent Coordination
Coordination is an important feature in multi-agent systems which
has a high influence on their performance. Measuring coordination
between interactive agents can be a difficult task. The scope of the
Λ∗ (Lambda Star) environment does not currently account for the

measurement of coordination between agents, but we are consider-
ing extensions to assess this. For instance, problems that require co-
ordination could have been evaluated if the payoff received from the
Good object⊕ (Section 4.1) had only occurred if two or more agents
were in its neighborhood.

Another interesting extension to the test setting is to enable the
environment to respond to the agent’s behaviour and actions. Testing
can be performed in an even more heterogeneous setting where the
agents don’t have the same reward function and/or actions and obser-
vations, and to give more attention or weight to the agent’s learning
(ability), which is an important aspect of intelligence.

Moreover, other properties like (environment) coverage could be
evaluated by dispersing agents in the space to monitor what is hap-
pening in the environment (e.g., monitoring which neighborhoods
are/are not explored by the agents).

6.2 Fitness Landscapes
Lambda Star (Λ∗) is one of many environments which can be used to
evaluate artificial agents. A famous problem in AI is to evaluate the
performance of artificial agents over fitness landscapes consisting of
many local optima but only one global optimum. The landscapes re-
flect evaluations of some fitness or utilisation function over a set of
candidate solutions. Adaptive landscapes can be considered where
the underlying fitness evolves or changes over time. We have im-
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Figure 5: A screen-shot from the early stages of a simulation of a
fitness landscape with many local optima but only one global opti-
mum. Colors (and their different intensities showing in the right-hand
side color-bar) represent fitness (ranging between [−1.0, 1.0]), or the
quality of the landscape, at different spatial positions. The black stars
represent agents navigating or searching the landscape.

plemented a performance test based on the abovementioned problem
description (by extending the Λ∗ environment) and further designed
a simulation depicting the behavior of (co-operative) artificial agents
exploring a landscape over a period of time. The motivation is to as-
sess the trade-off between exploration and exploitation in a reinforce-
ment learning setting, and investigate the influences of this trade-off
on the agents’ payoffs in a multiple candidate solution space or en-
vironment. A screen-shot from the early stages of that simulation is
given in Figure 5.

6.3 Further Thoughts on Robust Intelligence Tests
The same way collective intelligence can emerge between artificial
agents (due, for example, to the wisdom of the crowd [42], informa-
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tion sharing, reduction in entropy, etc.), pluralistic ignorance [37] is
also a common phenomenon observed in many social settings which
can occur between rational agents. Robust intelligence tests should
be able to detect such a phenomenon. For instance, the field of game
theory has highlighted several scenarios where cooperation between
agents does not leads to an optimal payoff (e.g., the famous prisoner’s
dilemma [35]). A robust intelligence test should be general enough
to reflect and evaluate such scenarios.

Other multi-agent phenomena witnessed in various social settings
reflect how agents acting individually might perform adversely to
the common good, and thus deplete their available resources as a
consequence of their collective behavior. A robust intelligence test
should allow for a quantitative assessment of the tragedy of the com-
mons [18] phenomena occurring in multi-agent scenarios.

7 CONCLUSIONS

This paper provides a technical description of the design and imple-
mentation of the Λ∗ environment which can be used to evaluate gen-
eral purpose AI agents both in isolation and collectively. The high-
level evaluation architecture, based on an agent-environment frame-
work, is discussed. The source code and scripts to run experiments
have been released as open-source, and instructions on how to admin-
ister the test to existing and new artificial agents have been outlined
and supported by examples.

We have also proposed and discussed some alternative testing en-
vironments that might be useful to quantify the performance of arti-
ficial agents. We further raised some arguments and considerations
(in connection with pluralistic ignorance and the tragedy of the com-
mons phenomena) that are relevant to the robustness of multi-agent
performance tests.

Having presented the above, we encourage people in the AI com-
munity to evaluate new, more advanced, types of heuristics and algo-
rithms over the Λ∗ environment, and also extend its scope to include
new functionality. Multi-agent systems can now be assessed using
various interaction and communication protocols. This indicates that
the performance of agent collectives can be quantitatively evaluated
and compared to that of individual agents. This might help answer
many open questions in AI regarding the emergence of collective in-
telligence in artificial systems.
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Abstract. There has long been a need for a simulation environment
rich enough to support the development of an AI system sufficiently
knowledgeable about physical causality to pass certain tests of Psy-
chometric Artificial Intelligence (PAI) and Psychometric Artificial
General Intelligence (PAGI). In this article, we present a simulation
environment, PAGI World, which is: cross-platform (as it can be run
on all major operating systems); open-source (and thus completely
free of charge to use); able to work with AI systems written in al-
most any programming language; as agnostic as possible regarding
which AI approach is used; and easy to set up and get started with.
It is our hope that PAGI World will give rise to AI systems that de-
velop truly rich knowledge and representation about how to interact
with the world, and will allow AI researchers to test their already-
developed systems without the additional overhead of developing a
simulation environment of their own. After clarifying both PAI and
PAGI, we summarize arguments that there is great need for a simu-
lation environment like PAGI World. We present multiple examples
of already-available PAI and PAGI tasks in PAGI World, covering a
wide range of research areas of interest to the general-purpose AI
community.

1 Introduction
Toward the end of his long and extremely distinguished career, Jean
Piaget began to name and concretely describe some mechanisms he
believed were responsible for the emergence of many features of ma-
ture cognition: formal reasoning, an understanding of causality, and
analogical ability were among these features, along with many oth-
ers [26, 25, 28]. Piaget had long suspected that these features and
the concepts they relied on were constructed by the child using sim-
pler schemas acquired through interaction with the physical world,
at least since (Piaget and Inhelder 1958). Thus the role that the world
plays in shaping the constructs and abilities of the child, which in-
forms the related question of how much AI can progress without
having a real-world-like environment, has been a cornerstone issue
in AI for some time now [10, 11, 18].

But modeling these Piagetian beliefs is, to this day, an unmet
goal that has existed at least since (Drescher 1991). Such model-
ing is a dream of computational cognitive modelers, but, perhaps
more specifically, is a goal of the field of developmental AI. This is
the field which attempts to show how, using an agent endowed with

minimal innate capacities embedded in a sufficiently rich environ-
ment, higher-level cognitive abilities can emerge [17]. These abili-
ties may include logico-mathematical reasoning, an understanding of
causality, robust analogical reasoning, and others. Furthermore, work
in developmental AI systems strives to show that the emergence of
such abilities could be reflective of the way they develop in humans,
whether this is in the pattern predicted by Piaget’s stage theories or
not.

This paper describes a task-centered, physically realistic simula-
tion environment that we have developed to simultaneously address
a set of challenges in evaluating AGIs. We motivate PAGI World in
Section 2, introduce PAGI World in Section 3, and outline examples
of a wide variety of tasks in PAGI World in Section 4.

2 Motivations
Here we summarize three categories of motivations for PAGI World,
particularly of interest to those wishing to evaluate artificially-
general intelligence (AGI). C1 - C6 specify conditions for a suffi-
ciently rich simulation environment. The Tailorability Concern (Sec-
tion 2.2) deals with the way in which an AGI acquires and constructs
its knowledge. Finally, Section 2.3 puts forth our belief that an AGI’s
knowledge should be expressive, in the sense of logical expressivity.

2.1 Guerin’s Conditions
Frank Guerin [17], in his recent survey of the developmental AI field,
concluded that current systems were lacking in several key areas.
Guerin then suggested that a major reason (arguably the most impor-
tant reason) why the field has the shortcomings he described, is the
absence of a suitable simulation environment. Current simulation en-
vironments used by developmental-AI projects were missing several
key features, and Guerin described some conditions that would need
to be met by simulation environments in order to address this prob-
lem. We refer to the most important of these conditions as C1, C2,
and C3. A sufficiently rich simulation environment for developmen-
tal AI should, at a minimum:

C1 be rich enough to provide knowledge that would bootstrap under-
standing of concepts rooted in physical relationships; e.g.: inside
vs. outside, large vs. strong, etc.



C2 allow for the modeling and acquisition of spatial knowledge,
which Guerin notes is widely regarded to be a foundational
domain of knowledge acquisition, through interaction with the
world.

C3 support the creation and maintenance of knowledge the agent can
verify itself.

[21] introduced a few additional conditions:

C4 be rich enough to provide much of the sensory-level information
that an agent in the real world would have access to.

C5 allow for testing of a virtually unlimited variety of tasks, whether
these are tasks testing low-level implicit knowledge, high-level ex-
plicit knowledge, or any of the other areas required by Psychome-
tric Artificial General Intelligence (PAGI). Ideally, such a system
would support the easy creation of new tasks and environments
without requiring a massive programming effort.

C6 provide pragmatic features enabling tasks to be attempted by re-
searchers using different types of systems and different theoretical
approaches, thus enabling these different approaches to be directly
compared with each other.

These conditions were elaborated on and defended in [21], so we will
not do so here. A common theme running through all six conditions
is that what is lacking from current microworlds is a physically real-
istic environment—one in which the agent can acquire, develop, and
test its concepts. But the concerns raised by Guerin are not only of in-
terest to the field of Developmental AI; in point of fact, all of AI can
benefit by addressing them. For example, C1 is extremely important
for cognitive models of analogy, as they struggle to overcome what
has been called the Tailorability Concern (TC)[16, 22].

2.2 The Tailorability Concern
TC, in essence, is the concern that models of analogy (though this can
be applied to all cognitive architectures in general) work almost ex-
clusively with manually constructed knowledge representations, us-
ing toy examples often tailor-made to display some limited-scope
ability. Licato et al. ([22]) argue that overcoming TC is necessary to
advance the fields of analogy and cognitive architectures, by devel-
oping a set of conditions that must be met in order to claim victory
over TC:

TCA3 A computational system of analogy answers TC if
and only if given no more than either

• unstructured textual and/or visual data, or

• a large, pre-existing database,

and minimal input, it is able to consistently produce use-
ful analogies and demonstrate stability through a variety
of input forms and domains.

According to TCA3, then, good performance on the part of a
cognitive agent on a sufficiently large knowledge-base from which
source analogs could be drawn is required to answer TC. An agent
interacting in the sort of microworld called for by Guerin might ide-
ally be able to acquire such source analogs by simply interacting with
its environment.

C1 and TC together require that the microworld itself is what pro-
vides the knowledge drawn upon to construct concepts of basic phys-
ical relationships, not manually constructed source analogs or fully
explicit logical theories. C2 expands on C1 by requiring that this

knowledge of physical relationships not be static, but rather should
allow for an agent in the world to learn through interaction. The idea
that children learn by initiating interactions with the world based on
their (often incomplete) conceptions of reality—in a manner that re-
sembles scientific experimentation—was championed by Piaget and
later, Piaget-influenced work [2, 29, 27, 39].

Following TCA3, another formulation of the Tailorability Concern
and recommendation for how to surpass it was also presented in [22]:

TCA4 A computational system A for analogy generation
answers TC if and only if, given as input no more than
either

• unstructured textual and/or visual data, or

• a vast, pre-existing database not significantly pre-
engineered ahead of time by humans for any particular
tests of A ,

is—in keeping with aforementioned Psychometric AI—
able to consistently generate analogies that enable A to
perform provably well on precisely defined tests of cog-
nitive ability and skill.

TCA4 ties TC to Artificial General Intelligence (AGI) by introduc-
ing the concept of Psychometric AI (PAI) [3, 9]. PAI sees good per-
formance on well-established tests of intelligence as a solid indicator
of progress in AI. Some may note that most intelligence tests fail to
capture human-level skills such as creativity and real-time problem
solving; therefore, related to PAI is Psychometric Artificial General
Intelligence (PAGI) [6]. For example, one test of PAGI is Bringsjord
and Licato’s (2012) Piaget-MacGyver Room, in which an agent is in-
side a room with certain items and a task to be performed. The agent
must achieve the task using some combination of the items in the
room (or using none of them, if possible). Depending on the task, the
solutions may require using the items in unusual ways, as viewers of
the MacGyver television series may remember. We describe several
example Piaget-MacGyver Rooms in PAGI World in Section 4.1

2.3 Expressivity
Even after satisfying TC, it would be difficult to claim an AGI is truly
general-intelligent unless its knowledge satisfies a certain degree of
logical expressivity. By this, we do not mean that an AGI must pos-
sess a Gödel-like mastery of formal logic. Rather, the term refers
to the well-established hierarchy of expressivity in formal theories.
For example, a formal theory equivalent in expressivity to first-order
logic (FOL) can express anything that one equivalent to propositional
calculus (PC) can express. The converse is not true; something like
“all men are mortal” simply cannot be expressed in a quantifier-free
logic like PC, since the ability to take any possible man m and apply
the statement “all men are mortal” to deduce that m is mortal is only
possible with machinery that treats quantified variables as variables
that can be quantified over.

Logical expressivity, then, is a real restriction on any formal the-
ory’s ability to express properties.2 But the use of terminology from
mathematical logic should not obscure the more general fact that log-
ical expressivity is really a restriction on any system whatsoever that

1 Note that although we have adopted “PAGI World” as the name of our sim-
ulation environment in order to reflect the fact that it is designed to sup-
port many types of PAGI tests (including variants of the Piaget-MacGyver
Room, as we describe below), PAI tests are just as easily implementable in
PAGI World.

2 See [33] for a good initial definition of what it means to express properties
in formal theories.



can be described using rules for producing new behaviors, actions,
knowledge, or structures. All AI systems in history are no exception;
once we formally describe the set of rules that govern that AI system,
those rules fall under some level of logical expressivity, and whatever
that level is limits what that system can ultimately do.

Furthermore, FOL’s expressivity is not enough for general intel-
ligence. Humans routinely reason over sets, analogies, the beliefs,
desires, and intentions of others, and so on. Such concepts require
logics significantly more expressive than FOL: second-order logic,
epistemic/modal logics, even third-order logic in some cases [7]. If
an AGI is to truly be as general-purpose a reasoner as the typical
human, a high level of expressivity is needed.

For the first time, we present here a conjecture3 encapsulating this
view:

AGI>FOL. No system can claim to be an AGI unless
its knowledge is at least more logically expressive than
first-order logic.

A very high-level proof sketch of the above is as follows:

1. a concept C is accurately captured in a system S only if that sys-
tem can, at a minimum, produce any actions, inferences, behav-
iors, or knowledge structures that would be expected of a system
capturing C .

2. A system cannot thus fully capture a concept C if its knowledge
representation is below the level of logical expressivity required
for C .

3. There are many concepts required for AGI which are at a level of
logical expressivity higher than FOL.

4. Thus, no artificial system with an expressivity at the level of FOL
or lower can be an AGI.

We omit many details here, but the argument presented is at the core
of a more encompassing argument for expressivity in AGI systems,
currently under development. For our present purposes, suffice it to
say that simulation environments which restrict the expressivity level
of the knowledge of the agents which can use the environments to, or
below that of FOL, can not hope to see the creation of fully general
intelligence. PAGI World avoids that by placing no restrictions on the
form of knowledge used by its artificial agents.

3 Introducing PAGI World

Condition C6 is the most practicality-oriented, reflecting both
Guerin’s (2011) and our own inclination to believe that an effective
way to compare AI and AGI methodologies would be to see how they
perform on the same tasks, implemented on the same systems. But
few such tasks and systems exist, and therefore before we describe
PAGI World, it may be helpful to take a step back and look at our
project in a broader view.

3.1 Why Isn’t Such a System Already Available?

Given its potential benefit to the field as a whole, why does such an
environment not currently exist, and do any of the roadblocks cur-
rently in the way affect the plausibility of our current project?

3 The authors believe strongly in the truth of AGI>FOL, and ultimately hope
to elevate it to the status of a theorem. However, as the present paper’s scope
permits only a loose proof sketch, we present it here as merely a conjecture.

3.1.1 Technical Hurdles

One potential roadblock is obvious: programming a realistic physics
simulation is hard. Some of this difficulty is reduced by working
with a 2D, rather than a 3D, environment. Although some software
libraries have previously been available for 2D physics simulations,
they have often been very language-specific and somewhat difficult
to configure.

Secondly, even if one were to stick with a 2D physics library and
commit to it, substantial development resources would be needed to
enable the resulting simulation to run on more than one major op-
erating system. Furthermore, even if that problem is somehow ad-
dressed, there is a vast diversity of languages that AI researchers pre-
fer to use: Python, LISP (in various dialects, each with their own
passionate proponents), C++, etc. All of these technical issues tend
to reduce how willing researchers are to adopt particular simulation
environments.

Fortunately, all of the above problems can be solved with a single
design choice. Unity, a free game-development engine, has recently
released a 2D feature set,4 which comes with a 2D physics model
that is extremely easy to work with. Furthermore, Unity allows for
simultaneous compilation to all major operating systems, so that de-
velopers only have to write one version of the program, and it is triv-
ial to release versions for Mac OS, Windows, and Linux. Because
Unity produces self-contained executables, very little to no setup is
required by the end users.

Finally, because Unity allows scripting in C#, we were able to
write an interface for AI systems that communicates with PAGI
World through TCP/IP sockets. This means that AI scripts can be
written in virtually any programming language, so long as the lan-
guage supports port communication.

3.1.2 Theoretical Hurdles

Unity conveniently helps to remove many of the technical roadblocks
that have previously blocked the development of simulation envi-
ronments that can be widely adopted. But there are also theoreti-
cal roadblocks; these are problems pertaining to the generality vs.
work-required tradeoff. For example, if a simulation environment is
too specifically tailored to a certain task, then not only can systems
eventually be written to achieve that particular task and nothing else,
but the simulation environment quickly becomes less useful once the
task is solved. On the other hand, if the system is too general (e.g. if a
researcher decides to start from scratch with nothing but Unity), then
the researcher must devote too much time and energy to developing
a new simulation environment for each project, rather than spending
time on the AI itself.

PAGI World was designed with this tradeoff in mind. A task in
PAGI World might be thought of as a Piaget-MacGyver Room with
a configuration of objects. Users can, at run-time, open an object
menu (Figure 1) and select from a variety of pre-defined world ob-
jects, such as walls made of different materials (and thus different
weights, temperatures, and friction coefficients), smaller objects like
food or poisonous items, functional items like buttons, water dis-
pensers, switches, and more. The list of available world objects will
frequently be expanding and new world objects will be importable
into tasks without having to recreate tasks with each update. Per-
haps most importantly, tasks can be saved and loaded, so that as new
PAI/PAGI experiments are designed, new tasks can be created by

4 In fact, the blog post making the announcement of the 2D feature set was
dated November 12, 2013.



anyone. Section 4 illustrates the wide variety of tasks that can be
created with such a system.

Figure 1: PAGI World With the Object Menu Visible

3.1.3 Other Simulation Environments

There have been some notable attempts to provide simulation
environments for AI systems, particularly those inspired by the
Developmental-AI approach. For example, in [12] Bruce created a
Developmental-AI testbed by updating an older version created by
Frank Guerin.

Although some of the present paper’s authors are sympathetic to
the power of Piagetian schemas and the AI systems derived from
Piaget’s theories, Bruce’s system is tightly coupled with a partic-
ular cognitive architecture (presented in the same paper) that uses
schema-based AI systems, whereas PAGI World, as we have said, is
agnostic about what AI approach is used. It is unclear how easy or
difficult it would be to adapt arbitrary cognitive architectures to work
with their simulation environment.

They used the JBox2D library for their physics engine, which, ac-
cording to [12], was poorly documented and difficult to work with
(e.g., implementing a method to detect when the robot hand touched
an object took markedly longer than they planned due to a lack of
documentation for JBox2D). Although a newer version of JBox2D
became available afterwards, implementing the new version requires
the simulation programmer to manually update the relevant code,
whereas updates to the Unity 2D physics engine automatically prop-
agate to PAGI World, without any code changes on our part.

3.1.4 Drescher’s Simulation

In [14], Drescher proposes an early microworld in which an agent,
making use of a primitive form of Piagetian schemas, explores the
world and learned about the objects with which it interacted. Al-
though this was a promising start, after its initial success it was not
developed further, nor was any significant effort made by other re-
searchers to pick up on Drescher’s work, as far as we are aware
(only one small-scale re-implementation of Drescher’s work exists,
e.g. [13]).

Drescher’s microworld consists of a 2D scene divided into a grid
that limits the granularity of all other elements in the microworld.
Inside this microworld are objects that take up discrete areas of the
grid and contain visual and tactile properties, in the form of numeri-
cal vectors with arbitrarily chosen values.

Most importantly, the microworld contains a single robot-like
agent with a single hand that can move in a 3-cell × 3-cell region
relative to the part of the robot’s body considered to be its “eye.” If
the hand object is adjacent to an object in the world (including the
robot’s own body), a four-dimensional vector containing tactile in-
formation is returned to the agent. The body has tactile sensors as
well, though they do not return tactile information as detailed as that
returned by the tactile sensors of the hand.

Visual information is available as well, in the form of a visual
field whose position is defined relative to the robot’s body. A smaller
region within the visual field, called the foveal region, represents the
area within the visual field where the robot is currently looking. The
foveal region returns vectors representing visual information, and the
cells in the visual field not in the foveal region also return visual
information, but with lower detail.

Perhaps one of the most interesting features of Drescher’s mi-
croworld is that the robot can only interact directly with the world
by sending a set of predefined “built-in actions.” Although the inter-
nal schema mechanism of the robot may learn to represent actions as
richer and more complicated, ultimately what is sent to the simula-
tion environment is always extremely low-level. Likewise, the infor-
mation provided to the robot is always extremely low-level. The task
of identifying and naming objects in the world—and even of know-
ing that objects in the world consistently exist!—is up to the learning
mechanism the robot utilizes.

The fact that the learning and control system of the artificial agent
can be developed almost completely independently of the features
of the world itself, is one of the primary reasons why Drescher’s
microworld is appealing, and was selected as a starting point for
PAGI World. PAGI World departs from, and has innovated beyond,
Drescher’s microworld in several key areas:

• Agnosticism re. the AI method used. Whereas Drescher’s mi-
croworld was created for the sole purpose of testing his Piagetian
schema-learning mechanism, we have designed the world, pro-
gram, and interfaces so that as wide a variety as possible of AI
techniques can be productively and easily used.

• Optional mid-level input. Related to the previous point, we re-
alize that some researchers simply won’t want to translate vector
input for every piece of tactile or visual information they come
across, and so we offer the option for the agent to directly receive
the name of the object upon touching or viewing it.

• Granularity. The granularity of our world is dramatically finer;
consider the increase in size of the visual field: Drescher’s was
an area of 7-×-7 cells with one visual sensor per cell. We have
improved the visual area to span a 450-×-300 unit area, with each
visual sensor spaced 15 units from its nearest neighbor (each unit
roughly corresponds to a screen pixel).

• Vision system. In addition to having a wider visual field, ours
has no foveal region, because the tasks we design require a visual
field large enough to observe multiple objects at once. Certainly it
is plausible that rapid eye movements can account for this ability
in human beings, but our initial investigations found it to have too
little theoretical benefit compared to how difficult it made working
with the system.

• Hands. We have given the robot two hands instead of one, each
with a similar range of motion, but with different distances (rel-
ative to the body) that each can reach. Although the simulation
world is 2D, the hands exist on a separate layer that floats “above”
objects in the world, analogously to a mouse cursor in any ma-
jor operating system. The hands can grip and move objects they



are floating over (just as one might click and drag an object in
Windows or MacOS), provided the objects are not too heavy or
otherwise held down.

• Realistic Physics. Certainly a very important improvement we in-
troduce is the aforementioned realistic physics provided by Unity
2D.

• Focus on a wide breadth of tasks. Although Drescher’s mi-
croworld was a start in the right direction, we feel that it did not
quite make enough of a push to be considered a simulation envi-
ronment for AGI tasks, nor did it explicitly set out to be a testbed
for the sort of tasks prescribed by Psychometric AI.

3.2 The Architecture of a PAGI World Setup
Figure 2 pictures the architecture of a typical PAGI World + AI con-
troller pairing. As the figure illustrates, it is helpful to think of the
processes controlled by the PAGI-World application to be the PAGI
side, as opposed to the side which can be completely implemented
externally, referred to as the AI side. The reflex and state machine
described in Section 3.3 is controlled and managed on the PAGI side,
but both states and reflexes can be dynamically modified through
commands sent by the AI side.

All commands going from the AI side to the PAGI side, and all
sensory information passing in the other direction, is passed via mes-
sages communicated through TCP/IP ports. Therefore, the AI-side
can be written in any programming language that supports the cre-
ation, and decoding, of strings over TCP/IP. Although this flexibility
sets PAGI World apart from many other alternatives, some may prefer
an additional level of abstraction on the AI side, and for this reason
we provide, and are continuing development on, a Python API called
pyPAGI.

Tasks can be created, saved, and loaded using the GUI editor at
run-time (Figure 1), but as suggested by Figure 2, they can also be
somewhat configured by AI-side commands. This can be useful to
modify the layout of the task dynamically in response to actions the
AI agent takes (e.g., making an apple appear as a reward, or a bottle
of poison as a punishment), or to load new tasks after successful task
completion for automated batch processing of tasks.

3.3 Reflexes, DFAs, and the Implicit vs. Explicit
Distinction

Although communication through TCP/IP ports is relatively quick,
and the command system we have created is designed to be efficient,
there are some actions that require extremely rapid, simple checks
and responses. For example, holding an object in the air at a certain
position relative to the body for an extended period of time may re-
quire many quick corrections. If the object starts to move down, more
upward force should be applied. But if it moves too far up, downward
force should be applied (or the amount of upward force should be re-
duced). In order to hold the object as still as possible, the amount
of force applied would be based on its current and projected veloc-
ity and position. However, if the AI script requests this information,
does a calculation to determine the amount of correction required,
and sends back the command to adjust the amount of force, by the
time this command is received by PAGI World and processed it may
be inaccurate.

PAGI World fixes this problem by implementing states and re-
flexes. Reflexes and states can be set and modified through commands
from the AI script, but they are actually checked and executed com-
pletely on the PAGI-World side, which allows for much faster reac-

tion times. A reflex r consists of a tuple (C,A), where C is a list of
conditions and A is a list of actions. Each condition in C must be
satisfied in order for reflex r to activate. These conditions can con-
sist of sensory inequalities, for example: whether one of the tactile
sensors detects a temperature above a certain amount, or whether
the AI agent’s body is moving above a certain velocity. If all of the
conditions are met, then the actions are executed immediately. Fur-
thermore, sensory inequalities can be specified as simple arithmetic
functions of sensory values, so that a reflex can be fired if (to cite an
arbitrary example) the horizontal component of the agent’s body’s
velocity is at least twice the value of the vertical component of its
velocity.

States can be activated and checked by reflexes. Essentially, this
means that multiple deterministic finite automata (DFAs) can be
stored and executed completely on the PAGI side. However, the ex-
pressivity of the conditions and actions within each reflex strictly
restricts the system so that full Turing machines cannot be imple-
mented on the PAGI side. This allows developers to implement two
important categories of abilities generally regarded to be part of the
human experience: explicit, and implicit. Recall that the explicit vs.
implicit distinction divides the mind into explicit processes which are
generally slow, deliberate, and easy to verbalize, versus implicit pro-
cesses which are mostly quick, automatic, and not easily accessible
to the conscious mind [35].

The implicit/explicit distinction [35], which roughly parallels the
System 1/System 2 distinction of Kahneman [20] (but see [37] for a
criticism of System 1 vs. 2), encompasses an extremely broad spec-
trum of explanations for human phenomena [34, 35, 36]. If a simula-
tion environment restricts itself to AI controllers that rely on explicit
or implicit processes exclusively, then it cannot hope to capture the
breadth of tasks required to qualify a Psychometric Artificial General
Intelligence. If PAGI tasks are meant to subsume all tasks solvable
by neurobiologically normal human adults, then a simulation envi-
ronment designed to capture PAGI tasks should also be able to test
AI agents on their use of both explicit and implicit knowledge.

Although the PAGI side does not support all imaginable implicit
processes (for example, some might believe that a Bayesian proba-
bilistic approach or a Deep Neural Network is necessary to imple-
ment some implicit processes), the fact that multiple DFAs can be
stored and executed in PAGI World’s optimized code gives the user
flexibility to capture a wide range of implicit processes. Furthermore,
in keeping with the design principles of PAGI World, AI systems
built on implicit processes can still be implemented fully on the AI
side.

4 Some Example Tasks
We have designed some tasks to demonstrate the range of possibili-
ties and showcase some of PAGI World’s unique features.

4.1 Piaget-MacGyver Rooms
4.1.1 The Water Diversion Piaget-MacGyver Room

A prime example of a typical MacGyver task comes from Season 2,
Episode 5 of the MacGyver television series. Angus MacGyver, the
series’ titular character, found a friend of his being threatened by a
mountain lion. MacGyver, positioned at a ledge above both his friend
and the mountain lion, reconfigured some rocks and a log so that he
could guide a nearby stream of water in such a way that it created
a small waterfall separating his friend and the mountain lion. The
mountain lion ran away immediately.
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Figure 2: The architecture of an instance of PAGI World and an AI con-
troller. Everything on the AI side can be written by AI researchers, as the in-
terface with the PAGI side is handled through messages passed over TCP/IP
sockets. A Python library, called pyPAGI, is also optionally available to assist
researchers with common AI-side functionality, including encoding of PAGI-
World knowledge in the Deontic Cognitive Event Calculus (DCEC ∗). The
reflex/state machine and task editors can also be controlled through TCP/IP,
though the task editor is additionally available through a WYSIWYG drag-
and-drop interface.

Figure 3: A sample Piaget-MacGyver Room in which the agent is expected
to direct the flow of water in order to reach an apple.

Of course, other solutions may have been available. Perhaps Mac-
Gyver could have simply thrown rocks at the mountain lion, or fash-
ioned a bow and arrow out of twigs, sharpened stones, and parts of
his knapsack. But these different solutions would have come with
their own unique advantages and disadvantages, and furthermore, to
not lose sight of the PAGI-oriented question: Could an artificially in-
telligent agent figure out any of these solutions without having been
specifically trained for that particular solution? PAGI problems such
as the Piaget-MacGyver room challenge researchers to find answers
to this question.

The ability to direct the flow of water opens up a wide range of
tasks, which we can model in PAGI World. Using the Fluvio li-
brary for fluid dynamics, PAGI World can generate fluid-like par-
ticles. These particles have several realistic properties of fluids; for
example, when poured into a cup-like container, an object placed in
the filled container will either float or sink depending on its weight.
The task in Figure 3 has water flowing down a system of angled
brick walls. The bottom angled wall can be moved around a pivot
in its center, so that the flow of water can be directed to the left or
right. If it is directed to the right, the water will flow further down
until it encounters an orange block. If the orange block is moved, the
water will eventually flow into a pit which contains an apple, which
the agent could previously see but not reach. The flow of water will
eventually fill up the pit, causing the apple to float up to where the
agent can reach it.

4.1.2 The Piagetian Balance-Beam Task

Some tasks that might be considered Piaget-MacGyver Rooms can
come directly from classical Piagetian experiments. Inhelder and
Piaget’s (1958) Balance-Beam Task (BBT) [19] has been modeled
many times using a variety of modeling techniques [41, 30, 32, 31,
38, 23]. In the BBT, a balancing beam with a set of weights are pro-
vided to a subject. The balancing beam has notches, hooks, or some
other apparatus that allows the weights to be placed on the left or
right sides of the balancing beam at predefined intervals. In most
versions of the task, the values of the weights and the distances that
the locations are from the center are made available to the subject.
The task is normally to figure out some version of the torque rule,
which relates the product of the value of a weight and its distance
from the center. For example, the subject may be presented with a
configuration of weights on the scale, and the subject is asked to pre-
dict whether the right or left side will tilt downwards or the scale will
balance.

Figure 4: The Piagetian Balance Beam Task in PAGI World

We recreate the BBT in PAGI World as in Figure 4. A balance
beam with several hooks on which weights can be hung is in the
center of the screen. There is also a switch (on the bottom right side
of the screen) that can be used to toggle the motion of the balance
beam. That way, the weights can be hung on the balance beam and the
beam will not move while the agent is reasoning about how the beam
should tilt when the switch is toggled. This BBT is fully implemented
and included in PAGI World (although no AI capable of solving this
task has yet been developed).

One clear limitation of computationally modeling most Piagetian
tasks is that you can’t really communicate with the AI agent in natu-
ral language like you can with the children in Piagetian experiments.
Although the current state of the art in natural-language processing
and generation prohibits such communication at present, PAGI World
offers tools to make it easier for researchers who are trying to achieve
this benchmark. There is a way to “talk to” the AI agent through an
input text box in PAGI World itself. Having the agent talk back, how-
ever, can be handled in three possible ways: through simple output
handled completely by the code on the AI side, by sending a message
to PAGI World that can be displayed in an output window (a console
screen accessible through PAGI World), or by creating a speech bub-
ble.

Speech bubbles can be created (Figure 5) by AI-side scripts. These
speech bubbles are recognizable by PAGI guy’s vision system, along
with data such as the name of the speaker, the location of the box,
the text written inside of it, and so on.



Figure 5: Speech bubbles can be created to simulate conversations, giving
them a visual element that makes for understandable demonstrations.

4.2 Moral Reasoning
4.2.1 Resolving a Moral Dilemma

One interesting and possibly fertile source of PAGI-World tasks is
the area of morality, specifically machine ethics [40], which is de-
voted to trying to engineer machines that have at least a degree of
moral sensibility. Figure 6 depicts an example task in which two in-
jured soldiers are equally distant from PAGI guy, and only a single
health kit is available. PAGI World allows the visual sensors to detect
whether a soldier is injured or healthy. If a health kit touches an in-
jured soldier, the soldier will become healthy and the health kit will
disappear.

Some might recognize this task as a variant of the Buridan’s Don-
key scenario, where a donkey unable to choose between two bales
of hay, paralyzed by indecision, ends up starving to death. This task
can be used, for example, to evaluate whether a reasoning system
is sufficiently intelligent to avoid certain paralyzing situations, or to
search for creative solutions where they exist. PAGI World provides
two health kits: a small one, and a large one. The large health pack (as
in Figure 6) can be broken in half, when enough force is applied to
it, and each half can be given to one of the soldiers. We recently used
this task to demonstrate that the search for creative solutions, and the
ultimate decision to let one soldier remain injured if such a solution
can not be found, can be carried out entirely within the framework
provided by the Deontic Cognitive Event Calculus [5].

Figure 6: A task where an agent only has one health kit but two injured sol-
diers.

4.2.2 Reasoning Over Obligations to Detect Hijacking

Bello et al. in [1], use PAGI World to model a situation in which
a robot capable of autonomously reasoning over moral obligations
(represented by PAGI guy) is maliciously attacked and infected with
a virus. The virus hijacks the robot’s actuators, instructing them to

perform the action of pushing a healthy soldier over a ledge, resulting
into the soldier’s falling into a lava pit below. By using the reason-
ing mechanisms provided by the Deontic Cognitive Event Calculus,
Bello et al. are able to show that the robot can reason over its obli-
gations and its apparent desire to perform the harmful action to the
soldier, ultimately concluding that such an action is not morally per-
missible. Presumably, further reasoning might hypothesize the exis-
tence of the hijacking virus.

4.3 Low-Level Reasoning
4.3.1 Learning to Catch and to Avoid Painful Objects

The reflex and state system (Section 3.3) allows for reflexes to be
created and configured from the AI side and stored on the PAGI side,
where they can be activated automatically based on sensory values.
Whenever such a reflex is activated, a message can optionally be sent
to the AI side, naming the reflex which was just fired. This can allow
for after-the-fact reasoning of automatic reflexes. In one example, a
set of reflexes are configured so that the agent will quickly retract its
hand after touching a hot object (temperature sensors are among the
sensors lining the circumference of both hands). If the agent touches
an object with a high temperature (the flames and the hot plates, in
this example), the reflex will first fire and then the AI side can decide
if further actions should be taken, for example by looking at the ob-
ject which caused the reflex to fire, thus giving the agent a motivation
to avoid going near hot objects in the future.

PAGI World also allows for objects in the simulation to have an
objective utility value. These are called endorphins; objects with a
positive endorphin value are those that the AI agent may want to pur-
sue (e.g. food items), whereas negative endorphin values are those
the agent should avoid. Most objects in PAGI World have an endor-
phin value of zero, and PAGI World itself does not ensure that certain
endorphin-seeking behaviors are implemented by the agent.

Another example of the reflex system is catching an object. In the
baseball-catching task (available online), a baseball is launched to
soar right above the agent’s head, and he has a time period of a little
over a second in which his hands can reach the ball without moving
his body. Of course, the agent can optionally move his body as well
to reach for the ball if necessary. If the ball is caught, the agent will
receive an endorphin bonus; otherwise, the ball will fall off of the
ledge and no longer be accessible to the agent. Although TCP/IP
communication is relatively quick, the microsecond timing required
to estimate the speed and trajectory of the ball and move the hand in
time to catch it is not easily (and probably not possibly) done with
controls firmly on the AI side. Instead, reflexes must be used.

In addition to sensor values, reflexes can be configured to activate,
deactivate, or check for states, which are simply string labels config-
ured by the AI side. Because reflexes can optionally be set to fire only
if certain states are active, followed by deactivation of current states
and activation of new ones, reflexes can be used as transitions be-
tween states in a deterministic finite-automata machine. In addition
to receiving notifications whenever such a reflex fires, the AI-side
can poll the PAGI side to see which states and reflexes are currently
active, so that it can change them if necessary.

4.4 High-Level Reasoning
4.4.1 Self-Awareness: Reasoning About the Self

Whether artificial agents can ever have self-awareness is a highly
controversial topic; this is clear from the public discussion sur-



rounding popular press reporting a recent experiment in robot self-
awareness. Bringsjord et al. (2015) started with a puzzle devised by
philosopher Luciano Floridi [15], in which three artificial agents, or
robots, are given either a “dumbing” pill or a placebo. The dumbing
pill disables their higher-level cognition (i.e. their ability to reason),
and is given to two of the three robots. All three robots are then asked
which pill they received. The two given the dumbing pill cannot rea-
son, and thus remain silent (note their silence is not by choice, but
because they fail to reason at all). The robot given the placebo ul-
timately concludes it cannot decide, whereupon it utters the phrase
“I don’t know.” However, upon hearing (and, importantly, feeling) it-
self utter the phrase, it now has a new piece of knowledge with which
to reason. Given this new piece of knowledge, along with an under-
standing of the rules of the current experiment (knowledge which is
also initially given to the other two robots), it can then conclude that
it was in fact, not given the dumbing pill.

PAGI World was used to create Floridi’s task [8]. We created a
task containing three agents5, and on the AI-side, the agents were
connected to an automated theorem prover reasoning in the Deontic
Cognitive Event Calculus [5]. This calculus is a knowledge represen-
tation framework capable of expressing de se beliefs, i.e. a specific
type of reasoning about the self [4]. Pills are given to each agent,
implemented as endorphin-producing items. Placebos produce nega-
tive endorphins, and the dumbing pills produce positive endorphins.
When a pill is absorbed by an agent, the endorphin value is sent to
the AI-side, where the agent’s reasoning system is either disabled or
left untouched.

The experiment can then proceed. Commands “spoken” to the
agents are typed in to a text box that PAGI World makes available
(strings entered into this box are sent as messages to the AI-side).
Statements the agents wish to output can be sent from the AI-side
to PAGI-side as a special type of command, where they will be dis-
played on a debug screen.

It is important to here introduce a disclaimer: we do not claim
such an experiment “proves” self-awareness in our artificial agent.
Rather, this is just another example of the psychometric philosophy
underlying PAGI World, according to which a series of psychometric
tests are proposed (in this case, the tests given by Floridi (2005)),
undertaken by AI researchers, and the cycle repeats. PAGI World
makes the creation of such tests easier.

4.4.2 Analogico-Deductive Reasoning

Because tasks can be created dynamically through special commands
sent from the AI-side, saved to file, and loaded, it is possible to train
PAGI guy on tasks, then change the task and see how the previ-
ous training transfers. Such a setup is ideal in the testing of transfer
learning, e.g. in instances of analogico-deductive reasoning (ADR).
In ADR, an agent uses analogical reasoning to generate a hypothesis
about some target domain (where the target domain is often unfa-
miliar in some way). The hypothesis is then subjected to deductive
reasoning, so that it can either be proven false, or possibly shown to
imply some method of experimental verification [23].

In [24], Marton et al. used PAGI World to demonstrate ADR in a
real-time task. The agent was given the ability to assess its surround-
ings, and to solve a source task. In the source task, PAGI guy had to
reach an apple by jumping over an obstacle (a raised brick). It was
then faced with a different task, in which the obstacle was instead a

5 The ability to create multiple agents in PAGI World is a beta feature that is
not available in the publicly available version. We expect this feature to be
ready soon.

gap in the ground. The AI-side was able to generate a hypothesis that
the solution used in the source task, to jump over the obstacle, would
work in the target task as well. It then carries out a proof using a de-
ductive reasoner, and upon receiving confirmation from the prover,
jumps over the gap to reach the apple. For more details, see [24].

5 Conclusion and Future Work

The release of PAGI World is accompanied with a call to all AGI and
human-level-AI researchers to finally examine the strengths and lim-
its of their preferred approaches. PAGI World allows for researchers
to very easily create tasks and microworlds in a 2D world with re-
alistic physics, with no knowledge in how to program. PAGI World
can interact with AI agents that are written in virtually any program-
ming language, and the simulation can be run on any major oper-
ating system. We have very carefully designed PAGI World to have
an extremely low technical barrier, so that many researchers can find
common ground upon which to compare their different approaches.

PAGI World can also be used in educational applications. In the
Spring of 2015, the present authors taught a course at RPI, which
made use of PAGI World for homework assignments, projects, and to
give students hands-on experience in implementing AI and cognitive
modeling techniques. The experiment was quite a success, and we are
currently further exploring PAGI World’s possibilities for education.

The future of PAGI World is bright. We already have several AI
systems in progress whose goals are to solve already-finished PAGI
World tasks, and as development continues we hope to greatly in-
crease the number of tasks which are available and the sophistication
of the agents which solve those tasks. The library of future tasks, we
hope, will diversify and reflect the broad spectrum of tasks which
require human-like intelligence.

PAGI World downloads, documentation, example tasks, and
source code can be downloaded from the RAIR Lab website at
http://rair.cogsci.rpi.edu/projects/pagi-world.6
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Historical account of computer models solving IQ test
problems

Fernando Martı́nez-Plumed1 and José Hernández-Orallo2
and Ute Schmid3 and Michael Siebers4 and David L. Dowe5

Abstract. In this short paper we summarise our work in [9] where
we make a review of what has been done when intelligence test prob-
lems have been analysed through cognitive models or particular sys-
tems. This work has been motivated by an observed explosion of the
number of papers on this topic in recent years. We have made a gen-
eral account of all these works in terms of how they relate to each
other and what their real achievements are. Not only do we aim at
analysing the meaning, utility, and impact of these computer models,
but also better understanding what these tests measure in machines,
whether they are useful to evaluate AI systems, whether they are re-
ally challenging problems, and whether they are useful to understand
(human) intelligence.

1 INTRODUCTION
In the early days of artificial intelligence, the IQ test classical ap-
proach to human intelligence evaluation was considered useful not
only as a tool for the study of cognitive processes and the develop-
ment of new techniques, but also for the evaluation of AI systems
or even as the goal for AI research. Since then, human psychometric
tests have been repeatedly suggested as a much better alternative to
most task-oriented evaluation approaches in AI. The question thus
is whether this measurement of mental developmental capabilities
leads to a feasible, practical evaluation for AI.

In this paper we briefly review our work in [9], where we analysed
all the computer models taking intelligence tests (or as many as we
could find, about thirty in total), starting with Evans’s ANALOGY
[6] and going through to Spaun [5], a noteworthy 2.5-million-neuron
artificial model brain. This analysis was motivated by an observed
explosion in recent years of the number of papers featuring com-
puter models addressing intelligence test problems. featuring com-
puter models addressing intelligence tests problems. We wanted to
investigate whether this increase was casual or was motivated by an
increasing need of these tests and the computer models solving them.
Overall, the main goal of the paper was to understand the meaning,
utility, and impact of these computer models taking intelligence tests,
and explore the progress and implications of this area of research.

2 HISTORICAL ACCOUNT
The relation between artificial intelligence and psychometrics started
more than fifty years ago. As early as 1963, Evans [6] and Simon

1 Universitat Politècnica de València, Spain, email: fmartinez@dsic.upv.es
2 Universitat Politècnica de València, Spain, email: jorallo@dsic.upv.es
3 University of Bamberg, Germany, email: ute.schmid@uni-bamberg.de
4 University of Bamberg, Germany, email: michael.siebers@uni-bamberg.de
5 Monash University, Australia, email: david.dowe@monash.edu

and Kotovsky [18] devised AI programs able to identify regularities
in patterns (respectively, analogy tasks and letter series completion
problems).

After the initial interest of AI research in IQ test problems, this
branch of research sank into oblivion during the twenty of so years.
However, since the 1980s, cognitive science research recovered this
line of research. Hofstadter developed a series of computational mod-
els in the Copycat project [11] with the major goal of understanding
analogy. In the 1990s, some cognitive models were proposed to sim-
ulate the human cognitive processes that take place when solving
inductive inference IQ test problems [2].

In AI, forty years after the work of Evans and Simon & Kotovsky,
in 2003, computer programs solving intelligence tests became of in-
terest again. On one hand, Sanghi and Dowe [16] wanted to make
a conclusive point about how easy it was to make non-intelligent
machines pass intelligence tests. This could have dealt a defini-
tive deathblow to this already ebbing approach. On the other hand,
Bringsjord and Schimanski aimed at resuscitating the role of psycho-
metric tests—including not only intelligence tests but also tests about
personality, artistic creativity, etc.—in AI [1]. They claimed that psy-
chometric tests should not be dismissed but placed at a definitional,
major role for what artificial intelligence is and proposed “psycho-
metric artificial intelligence” (PAI) as a direction of research.

But the fact is that the past ten (and especially five) years (since
2006 and especially 2011) have seen a boom of computational mod-
els aimed at solving intelligence test problems. The diversity of goals
and approaches has also widened, including the use of intelligence
tests for the analysis of what intelligence is, for the understanding
of certain aspects of human cognition, for the evaluation of some AI
techniques or systems, including robots, and, simply, to have more
insights about what intelligence tests really represent. See [9, Sec-
tion 5] for what we hope has been a complete description of all the
computer models that have addressed intelligence tests and related
tests, presented in chronological order.

3 DISCUSSION
The analysis has not been restricted to performing a survey of all
models addressing intelligence tests. Through a comprehensive ac-
count of the models we derived a set of criteria aiming at understand-
ing the meaning, utility, and impact of these computer models taking
intelligence tests, and explore the progress and implications of this
area of research. Furthermore, this analysis helped us to have a better
understanding of the relevance and (the limited) connections of these
approaches, and draw some conclusions about their usefulness.

We have seen that most approaches are very recent [5, 12, 14, 17,
20, 21, 15, 10]. Is it an indication of relevance? According to the



publication venues, we have seen that they go from mainstream AI
to cognitive science, or even psychology, and some of them are in
leading conferences and journals in these areas or even in interdisci-
plinary general outlets. However, it seems that most approaches aim
at unveiling general (artificial) intelligence principles in ways that
are not necessarily connected to the way humans solve these tests.
In fact, there is a wide variety in the techniques used, from more ad-
hoc to more general AI techniques (mostly from machine learning,
pattern recognition, automated reasoning, and natural language pro-
cessing). This suggests that this is attracting more interest in artificial
intelligence and cognitive science than in psychology. Overall, some
of these models (anthropomorphic or not) have been useful to pro-
vide insights and valuable information about how human cognition
works.

What about the use of these tests for AI evaluation? Are they be-
coming more common? It has been recently argued—from human
intelligence researchers—that intelligence tests are the right tool to
evaluate AI systems [3]. Nonetheless, we have not seen that artificial
intelligence has changed its evaluation protocols following this in-
crease of models taking intelligence tests (witch a few exceptions
such as [7, 19, 17, 5]). Furthermore, we have seen that even for
supposedly general tasks that are designed for evaluation, many ap-
proaches have the (understandable) tendency to specialise to the task
and hard-wire parts (or most) of the solution. The key issue is thus
to consider a greater diversity of problems. Very few approaches ad-
dress more than one kind of test. Actually, the more specific a test
is the easier it is to develop specific solutions. Furthermore, differ-
ent presentations and difficulty levels should be explored. The cate-
gories and overlaps between problems could be assessed via theoret-
ical models, instead of using factor analysis as in psychometrics. In
other words, a theoretical alternative to the classification of mental
abilities should be considered (see [8, 4]).

There is also a huge diversity in whether performance and diffi-
culty are assessed. We need to be clear that focussing on the overall
results of a computer model and comparing them with the results of
humans is not very informative about how challenging the problem
is. Humans are general-purpose systems and it is not fair to compare
them with some systems that are only able to solve one problem—
even if the problem comes from an intelligence test. Furthermore,
many of these intelligence test problems have been developed for hu-
mans, and hence it can be unfair to evaluate AI systems’ limitations
with anthropocentric measures. Nonetheless, some of the works per-
form an interesting analysis in terms of difficulty. The purpose is to
determine what instances are more difficult, but this is not very re-
lated to how challenging the problem is. In fact, focussing on the
most difficult problems may even make the system more specialised
to the intelligence test task at hand. Some of the previous works
have studied whether difficulty is related to the size of the working
memory, the size of the pattern, the number of elements that need to
be combined or retrieved from background knowledge or the oper-
ational constructs needed to solve this problems [18, 2, 20, 21, 13].
These notions of difficulty are much more general and can work in-
dependently of the problem and the representation.

4 CONCLUSION
Of the approximately 30 papers we have analysed in [9], half of
them have appeared in the past five years. We wanted to investigate
whether this increase was casual or was motivated by an increas-
ing need of these tests and the computer models solving them. In
order to study this we soon realised that computer models address-
ing intelligence tests may have different purposes and applications:

to advance AI by the use of challenging problems (this is the Psy-
chometric AI approach), to use them for the evaluation of AI sys-
tems, to better understand intelligence tests and what they measure
(including item difficulty) and, finally, to better understand what (hu-
man) intelligence is. Furthermore, the use of intelligence tests for AI
evaluation has provided very insightful information about what in-
telligence tests measure and what they do not and, ultimately, about
what characterises intelligence in humans.
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Expert and Corpus-Based Evaluation of a 3-Space Model 
of Conceptual Blending 
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Abstract.1  This paper presents the 3-space model of conceptual 
blending that estimates the figurative similarity between Input 
spaces 1 and 2 using both their analogical similarity and the inter-
connecting Generic Space. We describe how our Dr Inventor model 
is being evaluated as a model of lexically based figurative similarity. 
We describe distinct but related evaluation tasks focused on 1) 
identifying novel and quality analogies between computer graphics 
publications 2) evaluation of machine generated translations of text 
documents 3) evaluation of documents in a plagiarism corpus.  Our 
results show that Dr Inventor is capable of generating novel 
comparisons between publications but also appears to be a useful 
tool for evaluating machine translation systems and for detecting and 
assessing the level of plagiarism between documents. We also 
outline another more recent evaluation, using a corpus of patent 
applications.  

Introduction 

Analogical reasoning and conceptual blending have been identified 
by cognitive science as central abilities of human intelligence. Their 
relevance to general (artificial) intelligence being highlighted by 
their role in process like: learning [1] problem solving [2], induction 
[3], abductive scientific (re-)discover [4], language translation [5] 
and other cognitive processes ( [1] [6]). This paper describes several 
evaluations of the Dr Inventor [7], which (we believe) is the first 
analogy-based model to function directly on scientific publications.  

The Dr Inventor [7] system was developed with the specific 
objective of identifying creative [8] analogies between publications 
from the discipline of computer graphics. The primary focus of Dr 
Inventor is to identify similarities between graphics publications 
such that, when these are presented to computer graphics experts 
will (frequently) cause creative insight in the user, by highlighting 
some un-noticed similarities. Dr Inventor is focused on identifying 
analogies between a user’s publication and other papers that 
typically arise from a different topic (and year) within computer 
graphics. Early results show that the similarities identified by Dr 
Inventor will almost always suggest novel and identified source 
papers that generally would not be read by the user. 

As well as being a tool to inspire its users’ creativity, Dr Inventor 
aims to assess the novelty of a submitted document in relation to the 
other documents contained within its corpus. For example, its users 
may wish to assess the novelty of an Abstract before writing the full 
paper. Alternatively, a novice author may write the Abstract of a 
paper and then use Dr Inventor to identify a similar publication from 
a different topic, using this paper as a guide to writing their own full 
paper.  
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This paper assesses Dr Inventor on challenges related to 
identifying highly similar or quite similar documents. For example, 
we wish to assess its ability to quantify the similarity between 
different versions of the same document.  Our focus in this paper is 
on the metrics used by Dr Inventor and how well they quantify the 
similarity between highly similar documents and even different 
versions of the same document. So this paper represents an 
evaluation of the system at a task that differs from its primary 
objective. However, the first result we shall discuss relies on human 
expertise of senior researchers to perform the evaluation.  

The paper begins with a brief overview of approaches to 
retrieving similar texts. We then describe a model of analogy-based 
similarity before describing the Dr Inventor model for discovering 
novel and useful analogies between computer graphics publications. 
Our evaluation and results are then presented in three parts: 1) expert 
evaluation of the two creative analogies discovered from a corpus of 
papers from the SIGGRAPH2 conference series. 2) evaluation of 
machine generated forward-backward translations 3) evaluation of 
results for a plagiarism corpus. The paper finishes with some general 
remarks and conclusion on the evaluation of Dr Inventor.  

Document Comparison 

Identifying similarities between text-based documents has long been 
the subject of interest to artificial intelligence. Many approaches 
have been explored, with some of the more popular approaches 
being TF-IDF [9], LSA [10] and many others with many of these 
approaches being based on word distribution based document 
representations. Some of the inherent problems with such 
approaches are discussed in [11]. 

An alternative approach to graph-based document similarity is 
described in [11]. Our approach differs from this in a number of 
specific regards. Firstly, Dr Inventor's graphs are derived from the 
output produced by this GATE parser, whereas [11] does not use a 
parser. We do not use external resources to expand the information 
contained within a document, using the documents as they are 
presented to perform the similarity assessment. Dr Inventor is based 
on a cognitive model of figurative thinking, aimed at identifying 
similarities that are arguably even more abstract and those identified 
by [11]. Our approach looks for figurative similarities that are 
variously referred to as metaphors, analogies or conceptual blends.   

Analogy and Conceptual Blending 
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The approach explored and evaluated in this paper is derived from a 
cognitive model of people's ability to think figuratively, using two 
distinct systems of information. At its heart lies the computational 
model of Gentner's [12] influential Structure Mapping Theory 
(SMT), which posits that many figurative comparisons are best 
understood by identifying the largest common sub-graph between 
two systems of information. SMT is a 2-space model that explains 
why two semantically different concepts can be placed in 
correspondence between two documents, in SMT it is the topology 
of information that becomes the prime driver in determining the 
degree of similarity between two documents - this point shall be 
highlighted later.  

Consider the top and bottom rows of the following image as two 
distinct abstract diagrams. The problem is to identify the equivalent 
of the indicated circle from part a) within part b) of the image. If we 
focus on the circle in isolation and identify the most similar object 
in part b) then we would identify the central circle from part b). 
However, if we focus on the relations between object and think of 
the circle as the right-most object in a sequence, then we would 
identify the equivalent of the circle from part a as a square in part b. 
 
 

 
 
 

part (a) 
 
 

 
 
 

part (b) 
Figure 1: Which object in part (b) is analogous to the indicated 

circle from part (a)? 
 
This is just a simple illustrative example of the type of reasoning that 
underlies analogical thinking and conceptual bending. 

 
 

 
 
 
 
 
 
 
 
 

Figure 2. A 3-Space model of Blending 
 

Dr Inventor incorporates SMT into a partial implementation of 
conceptual blending (or Conceptual Integration Networks) [13,14]. 
We use conceptual blending theory to extend our 2-space model of 
analogy, introducing the generic space that represents the abstract 
commonality between two mapped (and potentially semantically 
different) concepts or relations. The implementation of SMT used to 
identify the counterpart projection between the inputs, basing the 
counterparts on the analogical similarity between them (forming 
what we call analogical counterparts)..  

A figurative comparison that is common in some cultures 
compares using your legs (for walking) to a bus (specifically, the 

“number 11 bus”). This comparison might cause “leg” to be mapped 
to the concept “bus”.  The lexical database WordNet [15] might 
identify an abstract connecting concept, identifying both instances 
of "instrumentality".  This abstract concept may then be stored in the 
generic space and may additionally contribute to evaluating the 
degree of similarity between the mapped concepts. 

Figure 2 outlines the structure of the information used by the 
central graph-based comparison process of the Dr Inventor model. 
Dr Inventor compares two text based documents not in terms of their 
raw textual contents, but instead uses a structured representation 
derived from a dependency parse of that lexical data – using a parser 
that has been specifically tailored to the needs of this project.  

Firstly, Input 1 and Input 2 are rich, highly structured and 
complex representations of the contents of the two input documents. 
Their generation will be outlined in section 4 of this paper. Secondly, 
the analogical counterparts are identified using an implementation 
of Structure Mapping Theory [12] as supported by the VF2 model 
of graph matching [16].  The output of this mapping phase is a list 
of paired items between Inputs 1 and 2, based primarily on the 
structure of their representations. Finally, the set of paired items 
(which may not necessarily be the most semantically similar items) 
are evaluated by identifying the Generic Space that connect each pair 
of items, using the WordNet lexical database and the Lin [17] metric. 
So the evaluations presented in this paper do not look at the Blended 
Space, but merely assess the level of similarity that already exists 
between Inputs one and two. 

Dr Inventor 

In this section we describe how information is processed through the 
Dr Inventor [7] system and the results that are found.  

Input Data 

The Dr Inventor system has as its input a Research Object (RO) [18] 
which, for our purposes, are text based documents. The system is 
focused on the domain of computer graphics and primarily processes 
academic papers in this domain. However, an RO can be different 
types of documents such as psychology material, patents or any 
other form of text based information. In this paper we will describe 
the processing that occurs with an academic document and this 
processing can be performed on any text based documents. 

Generating the Research Object Skelton (ROS) 
Graphs 

The Dr Inventor Analogy Blended Creativity (DRI-ABC) model 
does not work on the RO directly, so for the analogy part of the 
overall Dr Inventor system we first must process a document and 
create a Research Object Skelton (ROS). A ROS is an attributed 
relational graph that contains the core information from a document. 
At the core of a ROS is the Noun-Verb-Noun type of relations (or 
Concept-Relation-Concept) and this enables the application of 
Structure Mapping Theory [12] of analogy formation. This requires 
the extraction of the text based information and so the first step 
required in processing the document is Text Mining. 

Analogical 
Counterparts 

Generic 
Space 

Input 1 Input 2 



Text Mining Framework 

A RO is typically in the form of a paper in PDF or text format. To 
generate a ROS it is necessary to extract the different words, find the 
dependency relations between the words and attach part of speech 
tags to each word. Additionally, PDF documents introduce further 
problems in simply extracting sentences; problems arising from the 
layout, text flow, images, and equations contained within the PDF.  

The extraction of subject-verb-object triples from the textual 
contents of papers is supported by the Dr Inventor Framework [19]. 
This pipeline of scientific text mining modules is distributed as a 
stand-alone Java library3 that exposes an API useful to trigger the 
analysis of articles as well as to easily retrieve the results. For PDF 
papers the pipeline invokes the PDFX online Web service4 [20] 
where the paper is converted into an XML document. Core elements 
such as the title, authors, abstract and the bibliographic entries are 
identified.  

The Noun-Verb-Noun structure is found within individual 
sentences and sentences are identified by a Sentence Splitter 
specifically customised to the idiosyncrasies of scientific discourse. 
For each sentence, a dependency tree is built using a customised 
version of [21], a Citation-aware dependency parser.  The 
dependency tree identifies types of words (Noun, Verb, Adjective 
etc.) as well as the types of relationships (subject, object, modifier 
of nominal etc.). These are used to build the Noun-Verb-Noun 
structure for the ROS. Additionally the framework identifies co-
referent chains in the document, identifying co-referencing words 
possibly across sentences. This address issues with words such as it, 
he, she etc.  

Another feature of the framework is a trainable logistic regression 
Rhetorical classifier was developed which assigns to each sentence 
of a paper a rhetorical category (i.e. Background, Approach, 
Challenge, Outcome and Future Work) used in gold standard 
manually annotated Dr Inventor Corpus [22]. Rather than attempting 
to find analogies between full papers, the rhetorical categories may 
be used to find analogies in smaller sections of papers, for example 
is there an analogy between the background of one paper and the 
background of another.  

ROS Generation from Text Mining Framework Results 

The ROS is constructed by considering the dependency tree formed 
for each sentence in the publication. As in Agarwal et al. [23] a set 
of rules is applied to these trees, generating connected triples of 
nouns and verbs. One of the key properties of the ROS graphs is that 
multiple mentions of the same concept are uniquely represented. 
This is done either from the co-reference resolution of the text 
mining framework or by simply joining nodes that have the same 
word. Relation nodes, i.e. the verbs, can appear multiple times in the 
ROS. 

Each node has an attribute of “type” (i.e. noun, verb) and nodes 
are “tagged” with the rhetorical categories as discussed in the 
previous section. The format of the ROS was chosen to allow 
relationships between relations, i.e. second-order or causal 
relationships between nodes. In the future, when causal relationships 
are identified by the Text Mining Framework, these nodes will be 
included in the ROS. The graph database Neo4j5 uses attributed 

                                                                 
3 The Dr Inventor Text Mining Framework Java library can be downloaded 

at: http://backingdata.org/dri/library/ 

relational graphs as its representation and as such Dr Inventor uses 
it for storage of the ROS.  

Finding Analogous Document 

After storing a collection of ROs in the form of ROS graphs, we 
want to find the most analogous paper given a chosen target paper. 
We achieve this by finding (and rating) mappings for the target paper 
with every other paper contained in the database and choosing the 
mapping with the highest score. We will now discuss briefly how a 
mapping is found between one pair of papers.  

ROS Mapping 

The generated mapping adheres to Gentner’s structure mapping 
theory [12] and its systematicity principle and 1-to-1 mapping 
constraint. Mapping rules and constraints discussed in [24] 
incorporating both structural mapping and semantic aspects are also 
utilised. We say that a source graph and a target graph are mapped.  

Firstly, the structural mapping between two ROS graphs is based 
on: 1) graph structure, 2) conceptual structure. Graph structure 
focuses on identifying isomorphic graphs. Specifically, find the 
largest isomorphic subgraph of the target in the source. Conceptual 
structure addresses the conceptual similarity between the nodes and 
edges that are to be paired by the mapping process [2,25]. A 
customised version of the graph matching algorithm VF2 [16] is 
used along with three chosen constraints on the mapping. 

Secondly, semantic similarity is used during the computation and 
the selection phase of candidate pairs. Whenever we encounter two 
or more candidate pairs that satisfy the structural constraints, we 
select the pair with the greatest semantic similarity. This similarity 
is calculated by dictionary-based approach, utilizing the Lin 
similarity measure [17], which in turn uses WordNet [15] to 
calculate the similarity between a pair of source and target nodes of 
similar type (s, t).  

The combination of structural constraints and the preference for 
mapping semantically similar nodes (where possible) leads to a 
surprisingly swift mapping process. We conducted a test involving 
several hundred graphs each involving several hundred nodes, with 
each being mapped to a clone of itself. Optimal mappings were 
generated on 100% of these clone-mapping problems, with an 
average time of under 1 second each on a standard desktop 
computer. The efficiency of this mapping process plays a significant 
part in enabling our search for analogically similar document-
graphs.  

Mapping Metrics 

To select the most analogous source paper for a given target paper 
we must have some way to rate the mappings. We use a unified 
metric that combines a structural similarity score with a semantic 
similarity score to have an overall Unified Analogy Similarity (AS).  

Jaccard’s coefficient [26] is used to measure the structural 
similarity. The coefficient is used to measure the similarity between 
two finite sets. The mapping between two graphs is effectively the 
intersection between the two sets of nodes for the source and the 
target. As such, the Jaccard’s coefficient can be applied. The 

4 http://pdfx.cs.man.ac.uk/ 
5 http://www.neo4j.com 



Jaccard’s coefficient has a value between 0 and 1, where if it has 
value 1 the two ROS graphs are identical and if it is 0 then there is 
no mapping between the two ROS graphs. Jaccard’s coefficient 
gives an estimate of how much of the graphs have been mapped.  

For the semantic similarity score we use the same Lin metric as 
used in the semantic mapping. The Lin metric always gives a value 
between 0 and 1. We calculate the overall semantic similarity of the 
mapping by getting the average semantic similarity of all paired 
items in the mapping.  

The Unified Analogy Similarity score is calculated by 
multiplying the Jaccard’s coefficient by the Semantic Similarity 
score giving a value between 0 and 1. After finding the scores for 
mappings of all source papers with a given target paper, we select 
the most analogous source paper by whichever has the highest 
unified analogy similarity. 

 

Additional Processing 

The above has described the analogy component of the Dr Inventor 
system. Further processing is done on Computer Graphics papers as 
part of the overall system. Information is extracted such as topic 
lists, key words, links between citations, visualisation of similarity 
between documents and more, as well as a user interface is done by 
the system, however, this is outside the scope of this paper which is 
focused on the analogy part of the process. 

Finding and Evaluating a Computer Graphics 
Analogy 

To test and evaluate the DRI-ABC system we created a corpus of 
957 papers from the SIGGRAPH computer graphics conference. 
This is one of the top ranked computer graphics conferences in the 
world. These papers went through the Text-Mining Framework and 
the ROS generation components of the Dr Inventor system. Papers 
were included from the years 2002 to 2011 and included many 
different sub-topics within this discipline. A small and random 
selection of papers were chosen to serve as target papers and we 
found analogous source papers. In this section, we will discuss two 
of the analogies found. The mapping was performed between the 
(lexical) abstract of each paper combined with the rhetorical 
category of background for each paper and performing the mapping 
only between these sections of each paper. 

In generating the two analogies discussed below, all other papers 
in the corpus were mapped with the target. From the resulting 956 
analogies, the analogy metrics were used to choose only the best 
source analog for the presented target. Early testing showed that 
there is frequently an exponential distribution in the quality of the 
analogical comparisons we discovered (as quantified by the analogy 
metrics). For this and other reasons, we do not expect Dr Inventor to 
always find creative analogies for a presented paper. So, in this paper 
we discuss the two best analogies discovered from a list of the 10 
best analogies discovered by Dr Inventor.  

We will first briefly discuss the Target Paper and what the paper 
is about. Then we will briefly discuss the Source Paper that was 

chosen by the system. Finally we will talk about feedback from the 
analogy. This will be qualitative feedback from a senior professor in 
computer graphics and then quantitative ratings from multiple 
computer graphics researchers. Each evaluator spent around 50 
minutes evaluating each analogy and they were rated on three 
properties, on a scale from 1-5, 1) novelty 2) usefulness and 3) 
challenging the normal view of the topic. 

Agreement between raters was calculated using Krippendorff's 

alpha, as the rating scale formed a numeric interval (1-5) with small 
differences (4 -5) being of less significance than larger differences 
(1-5) on this linear numeric scale. Analysis of the rating data for 12 
rates using a 5 point Likert scale returned the following 
Krippendorf’s alpha values: 

(1) Novelty of  0.344,  
(2) Usefulness 0.274 
(3) Challenge the norms 0.394 
The might be considered a surprisingly high level of agreement, 

given that creativity is often said to be very subjective – particularly 
given the diversity in the experience possessed by the different 
raters.  

Figure 2. Dr Inventor Paper Processing System 

Figure 3. Target Paper 1 Topics 

Figure 4. Source Paper 1 Topics 



First Analogy 

Target Paper 

The target paper we will discuss is “Linear Combination of 
Transformations” by Marc Alexa which appeared in SIGGRAPH 
2002. A brief description of the paper is: This paper’s problem is 
trying to transform a 3D model. The problem is that transforming a 
3D model is based on matrix or quaternion operations and these 
operations are not commutative. The proposed solution is to break 
each transformation matrix into smaller parts and perform them 
alternatively and thus the linear combination of smaller matrix 
transformations is closer to being commutative. Figure 2 shows the 
topics the paper is contained within (Interaction). This image is 
generated by Dr Inventor. 

 
 

Source Paper 

Searching through the full corpus of 957 papers, the paper chosen 
with the highest Analogy Similarity score was “Gaussian KD-Trees 
for Fast High-Dimensional Filtering” by Andrew Adams et al which 
appeared in SIGGRAPH 2009. A brief description of the paper is: 
The paper presents an algorithm to accelerate a broad class of non-
linear filters. The problem is non-linear filters scale poorly with filter 
size. The proposed solution it to propose a new Gaussian kd-tree, 
which sparsely represents the high-dimensional space as values 
stored at points. Figure 3 shows that the paper is contained in the 
topics: Image.photography, image.imageand Animation.Collision. 

Analogy Feedback 

A senior professor in Computer Graphics examined these two papers 
after the system identified them. He considered the two papers to be 
very analogous and promising. As part of the mapping, the term 
“matrices” in the target paper was mapped to the term “filter” in the 
source paper. This suggested that the manipulations applied to 
matrices can be applied to filters and vice-versa. To show how Dr 
Inventor could be applied as a Creativity Support Tool this 
suggested new research ideas that could be further explored. Such 
as, can we break down image filters into small parts and perform 
them alternately as was done to the matrices in the analogous paper. 
Or cascade image filtering and their commutativity. 

Two of the interesting things about the found analogy are the 
differences in the year (2002 and 2009) and also the topics each 
paper is contained in. They are somewhat dissimilar. This suggests 
the papers would not usually be compared to one another and they 
would not typically be papers read when trying to find analogous 
problems. Dr Inventor is identifying structures not normally 
considering when trying to find similar papers. Furthermore the 
conceptual similarity (the semantic similarity between mapped 
nouns) is 0.37 showing a marked difference between the concepts 
while a high relational similarity (0.79) was found.  

Additionally evaluation of the analogy was performed by 13 
evaluators, mostly post-graduate students in computer graphics but 
also post-doctoral researchers and two senior professors. The 
average ratings obtained were 4.5 for novelty, 3.7 for usefulness and 
4.1 for challenging the normal view of the topic.  

Second Analogy 

Target Paper 

The second target paper is “Fast Bilateral Filtering for the Display 
of High-Dynamic-Range Images” by F Durand and J Dorsey from 
SIGGRAPH 2002. This paper presents a technique for the display of 
high-dynamic-range images, which reduces the contrast while 
preserving details and how poor management of light – under- or 
over-exposed areas, light behind the main character, etc. – is the 
single most-commonly-cited reason for rejecting photographs. It has 
the topics Image Processing and Photograph. 

 

Source Paper 

The paper with the highest Analogy Similarity score was “Curve 
Skeleton Extraction from Incomplete Point Cloud” by A 
Tagliasacchi, H Zhang and D Cohen-Or from SIGGRAPH 2009. 
This paper presents an algorithm for curve skeleton extraction from 
imperfect point clouds where large portions of the data may be 
missing. The problem arises from incomplete data during 3D laser 
scan. The point cloud data contains large holes. The paper has the 
topics Modeling and Point Cloud. 

Figure 5. Target Paper 2 Topics 

Figure 6. Source Paper 2 Topics 



Analogy Feedback 

A different senior professor provided the qualitative feedback for 
this analogy. Each paper, when broken down to its basics, is 
discussing about “missing data” in the image. In the case of the 
target paper, data about the image is obscured by the contrast of a 
digital photograph as it cannot as accurately capture the image as the 
human eye. In the source paper, data points of the 3D image are 
blocked from being scanned by the lasers. Mappings are found 
between the term “Hole” in the target paper with “Area” in the 
source paper. That is “the photo will contain under- and over-
exposed areas” is mapped to “data contain large holes caused during 
3D laser scan”, so Dr Inventor can suggest the similarities between 
the two paper problems.  

The results of this analogy suggested to the professor several 
possible new ideas for reconstruction of hidden information. How 
would similar techniques apply to motion capture, missing video 
data and more. 

As in the first example the two papers are found many years apart 
and the topics they are contained within are not similar. Again, Dr 
Inventor is finding far analogies that typically would not be found 
by a normal literature review when attempting to write a research 
paper. The conceptual similarity was again low (0.37) while the 
relational similarity was high (0.8). 

For the evaluation performed by more researchers, the average 
ratings were obtained for the same three categories. 4.1 for novelty, 
3 for usefulness and 3.3 for challenging norms. 

Further Usage of System 

We have described the usage of PDF academic papers through the 
Dr Inventor system and two of the results found. Additionally, Dr 
Inventor can be expanded outside its original focus on the domain of 
computer graphics. ROS graphs can be formed from any text based 
documents and commonly used plain text files can be processed 
through the system. We now discuss some of these specific formats 
that can be used. 

We describe the evaluation of Dr Inventor on two tasks that lie 
beyond the initial scope of this project. Firstly we assess Dr Inventor 
and particularly its similarity metrics at the task of automatically 
evaluating the faithfulness of machine translation services. 
Secondly, we assess it at the task of detecting the degree of similarity 
between a document and plagiarised versions of those documents. 
In this section we focus our evaluation on aggregations of results 
rather than presenting individual comparisons.  

Machine Translation Evaluation 

Another means of evaluating the DRI-ABC system is to evaluate 
translations generated by machine translation services. So, this 
section represents a joint evaluation of DRI-ABC as well as the 
machine translations themselves. This is searching for a near 
analogy i.e. generating similar but slightly different versions of the 
document.  

By taking an original document (in English), translating it to the 
chosen language and then translating this back (to English) we can 
check for similarities between the original document and the 
translated back document. One advantage of our graph matching 
approach is that it is not sensitive to the introduction (or removal) of 
sentence boundaries between the original and back-translated 
documents.  

Corpus of Translated Documents 

The psychology dataset was collected from psychology literature [2] 
on analogical reasoning and problem solving, consisting of 36 
English texts used in several human-subject tests. These texts 
represent stories containing between 50 and 400 words 
(average=205) with several being in the form of analogous pairs of 
stories. A selection of documents (18) from this dataset was 
translated into different languages and then back-translated to 
English. Google Translate was used to perform the translations and 
this translation corpus was created specifically to contribute to the 
evaluation of Dr Inventor. By varying the difference between 
English and the target language we aim to evaluate the metrics used 
by Dr Inventor.  Our expectation before undertaking this work was 
that, as the target language became more distant from English the 
similarity score between the original and back-translated text should 
decrease.  

The languages chosen were Irish, Russian, Spanish, French, 
German, Arabic and Amharic. These languages were selected due to 
feedback received from native speakers of these languages on 
Google Translate and as Dr Inventor project members are (mostly 
native) speakers of these languages. It is expected that Spanish, 
French and German will be ranked the highest, while Arabic and 
Amharic will be ranked the lowest. Native speakers of Arabic and 
Amharic read some sample documents (not part of any Dr Inventor 
corpus) and they were generally rated as being of poor quality by 
these speakers. In particular, Amharic was only added to Google 
Translate in early 2016 and as such, it has not had as long a time to 
train and refine the translation system. Additionally the languages 
Russian and Irish were also selected to see if they could be 
evaluated. Spanish and French are Romance languages with well-
developed machine translation systems, so our expectation was that 
these would produce some of the most faithful translations.  

Of course our evaluation will also qualitatively discuss the 
maturity of Google’s translation service for each language. 

Translation Quality Estimation 

The best results on the corpus were produced, as expected, for the 
languages Spanish, French and German. As these are the languages 
most closely related to English and they are also some of the most 
widely used and well-developed translation systems. It was decided 
to use these scores and results to be a baseline for a good translation 
score. Native English speakers compared the original document with 
the back-translated document they were generally considered to be 
fairly accurate re-representations of the original text. 

Running the system using the Arabic and Amharic languages also 
produced the expected results as the scores received were much 
lower than the “well translated” languages. Native English speakers 
comparing the original document with the back-translated document 
agreed that numerous errors did occur. As discussed above, native 
speakers of these languages did find errors and problems. These 
were not unexpected due to the dissimilarity in the languages 
themselves. In particular, in Arabic the word order can be quite 
different even due to the differences in direction of reading. 
Additionally, in Arabic, the subject could be dropped from the 
sentence but still have the same meaning, as the subject is implicitly 
understood.  

Finally, the system was run with our two “testing” languages, 
Irish and Russian. By using the baseline of the “well translated” 
languages and the “badly translated” languages, it showed that the 



Google translate system worked quite well with the Russian and 
Irish. Their scores were not as high as Spanish, French or German 
but they were much better performing than Arabic and Amharic. 

The box plot below (Figure 7) summarises all the results of this 
translation evaluation. Overall it showed the Dr Inventor system 
performed as expected at evaluating the “well-translated” and 
“badly-translated” languages. 
 

 

Plagiarism Corpus 

A corpus of plagiarised short documents was created [27] with the 
aim that it could be used for the development and evaluation of 
plagiarism detection tools. The corpus consists of short answers to 
computer science questions and the plagiarism challenge has been 
simulated, representing various degrees of plagiarism. Using this 
corpus we assessed Dr Inventor’s ability to detect plagiarism among 
these documents, i.e. searching for near analogies. 

Levels of Plagiarism 

Each answer used a Wikipedia entry as a source text. The corpus has 
four levels of plagiarism:  

1) near copy: simply copying text from the entry.  
2) light revision: basing the answer on the entry but the text 

could be altered in basic ways. Words could be substituted 
and paraphrasing could be used.  

3) heavy revision: again basing the answer on the entry but 
the text was rephrased using different words and structure.  

4) non-plagiarism: by using standard learning materials 
answers were constructed by using the participants own 
knowledge. 

Corpus Contents 

19 participants were asked to answer 5 questions according to the 
guidelines of the level of plagiarism to be used. 95 answers were 
generated by these students. Including the original Wikipedia entry 
100 documents are contained within the corpus and these documents 

are passed through the Dr Inventor system to see how it assesses the 
four different levels of similar contained within this corpus. 

Output from the System 

All of the 100 documents were processed by the Dr Inventor system 
and ROS graphs were created for each of them. The original 
document was compared against the 4 different plagiarised versions 
by mapping their respective ROS graphs. The semantic similarity 

score from Dr Inventor was measured and the following box plot 
was obtained over the corpus.  

 
This shows that as the amount of plagiarism decreases, the 

semantic similarity found by Dr Inventor decreases as well. This 
again was a very pleasing result as it shows that the metrics currently 
in use by Dr Inventor show a degree of refinement in estimating the 
similarity between plagiarised versions of documents. 

Future Work 

Our earlier results show that the existing metrics used by the Dr 
Inventor system appear to operate effectively, even when there's 
relatively little semantic distance between the two input documents.  
This gives us confidence to start exploring its use in dealing with 
patent applications. Estimating the similarity between patent 
applications [28] is particularly important to Dr Inventor. One 
current undertaking relates to adapting the parser to correctly handle 
some of the lexical peculiarities of patents so that they are correctly 
processed by the parser [29].  

Some future work is based on the notion that many commercially 
sensitive patents are written such that they will not be found by 
existing retrieval tools. This makes the challenge of filing a defence 
against a new patent application very difficult for the holder of an 

Figure 8. Semantic Similarity for Different levels of Plagiarism 

Figure 7. Similarity scores for the languages Irish, Russian, Spanish, 
French, German, Arabic and Amharic 

 



existing patent. In future work we hope to be able to identify some 
of these patents. 

Conclusion 

We described the Dr Inventor system that identifies figurative and 
structure-based similarities between text based documents. 

The first evaluation used Dr Inventor’s metrics to identify two 
very high quality analogies between publications from the 
SIGGRAPH conference series. Each was evaluated by a senior 
researcher in computer graphics and this showed that each 
comparison was both novel and also represented a reasonable 
hypothesis that was worthy of their consideration. Both evaluators 
agreed that each could (at least) be considered as the basis for 
subsequent research.  

The second evaluation of Dr Inventor outlined a translation 
corpus that was based on English language versions of 18 different 
texts sourced from various psychological studies on the analogy 
process. These texts were translated into seven different target 
languages and then back-translated to English, creating different 
versions of the source document. Dr Inventor showed that the closest 
languages produced the best translations as estimated by its metrics.  
Similarly the newest translation languages which are also the most 
distant from English produced the lowest results - the two 
intermediate languages are producing intermediate results. While 
lacking a certain degree of refinement these results show that Dr 
Inventor may be usefully used to estimate the quality of “roundtrip” 
translations. 

Dr Inventor and its similarity metrics were also assessed at the 
task of evaluating a “short answers” plagiarism corpus. This 
contained short documents in one of three levels of plagiarism, as 
well as one non-plagiarised version of each document. Again this 
evaluation showed that Dr Inventor showed a good ability to identify 
between the different levels of plagiarism within the corpus.  
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Playing Atari Games with Deep Reinforcement Learning
and Human Checkpoint Replay

Ionel-Alexandru Hosu1 and Traian Rebedea2

Abstract. This paper introduces a novel method for learning how
to play the most difficult Atari 2600 games from the Arcade Learn-
ing Environment using deep reinforcement learning. The proposed
method, called human checkpoint replay, consists in using check-
points sampled from human gameplay as starting points for the learn-
ing process. This is meant to compensate for the difficulties of current
exploration strategies, such as ε-greedy, to find successful control
policies in games with sparse rewards. Like other deep reinforce-
ment learning architectures, our model uses a convolutional neural
network that receives only raw pixel inputs to estimate the state value
function. We tested our method on Montezuma’s Revenge and Pri-
vate Eye, two of the most challenging games from the Atari platform.
The results we obtained show a substantial improvement compared
to previous learning approaches, as well as over a random player.
We also propose a method for training deep reinforcement learning
agents using human gameplay experience, which we call human ex-
perience replay.

1 INTRODUCTION

General game playing is an extremely complex challenge, since
building a model that is able to learn to play any game is a task
that is closely related to achieving artificial general intelligence
(AGI). Video games are an appropriate test bench for general pur-
pose agents, since the wide variety of games allows solutions to use
and hone many different skills like control, strategy, long term plan-
ning and so on. Designed to provide enough of a challenge to human
players, Atari games in particular are a good testbed for incipient
general intelligence. With the release of the Arcade Learning En-
vironment (ALE) [3] in 2012, general game playing started to gain
more popularity. ALE is an emulator for the Atari 2600 gaming plat-
form and it currently supports more than 50 Atari games. They are
somewhat simple, but they provide high-dimensional sensory input
through RGB images (game screen).

Deep learning models have achieved state-of-the-art results in do-
mains such as vision [13, 22, 11] and speech recognition [2]. This is
due to the ability of models such as convolutional neural networks
to learn high-level features from large datasets. Along with these
achievements, reinforcement learning also gained a lot of ground re-
cently. These powerful models helped reinforcement learning where
it struggled the most, by providing a more flexible state representa-
tion. As a consequence, tasks such as learning multiple Atari games
using a single, unmodified architecture became achievable through
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deep reinforcement learning [15, 16]. However, in environments
characterized by a sparse or delayed reward, reinforcement learning
alone is still struggling. This is caused mostly by naive exploration
strategies, such as ε-greedy [21], that fail to find successful policies
to discover an incipient set of rewards. This is the case for the most
difficult video games from the Atari platform, such as Montezuma’s
Revenge and Private Eye, that prove to be too challenging for all
current approaches.

In a different context, AlphaGo [20], a system combining rein-
forcement learning with Monte Carlo Tree Search, defeated Lee
Sedol, one of the top Go players in the world. Nearly 20 years af-
ter Garry Kasparov was defeated by Deep Blue [7], this represented
an important milestone in the quest for achieving artificial general in-
telligence. Together with the launch of the OpenAI Gym [6], it is one
of the most significant advances that reinforcement learning made in
the last couple of years.

This paper demonstrates that it is possible to successfully use a
learning approach on the most complex Atari video games, by intro-
ducing a method called human checkpoint replay. Our method con-
sists of using checkpoints sampled from the gameplay of a human
player as starting points for the training process of a convolutional
neural network trained with deep reinforcement learning [15, 16].

The paper proceeds as follows. In section 2, we present the most
relevant results on learning for Atari video games. Section 3 follows
with a more in-depth analysis and explanation of the current results
for Atari games. We also motivate our choice of games for evaluat-
ing our architecture, providing a brief description of the difficulties
encountered in these games. In section 4 we provide a thorough de-
scription of the proposed methods and deep reinforcement learning
architecture. Section 5 presents the results of our approach, as well
as a detailed discussion on the performed experiments.

2 RELATED WORK

After the release of the Arcade Learning Environment, there have
been numerous approaches to general game playing for Atari games.
Approaches such as SARSA and contingency awareness [4] deliv-
ered promising results, but were far from human-level performance.
The use of neuro-evolution [9, 10] on the Atari platform dramatically
improved these results, but playing Atari games as well as a human
player still seemed unachievable.

The first method to achieve human-level performance in an Atari
game is deep reinforcement learning [15, 16]. It mainly consists of a
convolutional neural network trained using Q-learning [25] with ex-
perience replay [14]. The neural network receives four consecutive
game screens, and outputs Q-values for each possible action in the
game. Experience replay is used in order to break the correlations



between consecutive updates, as Q-learning would prove unstable in
an online setting. The most important aspect of this approach is that
it can be used to construct agents that do not possess any prior do-
main knowledge, thus rendering them capable of learning to perform
multiple different tasks.

After this first success of deep reinforcement learning [15, 16], a
number of improvements have been made to the original architecture.
The fact that its convergence was slow and it took multiple days to
train a neural network on a single game motivated the development
of a distributed version of deep reinforcement learning [17] which
reduces the training times and improves the existing results.

Another notable improvement came from the realization that the
Q-learning algorithm sometimes performs poorly by overestimating
action values [8]. This issue may be solved by employing double Q-
learning [23] - using it together with deep reinforcement learning on
the Atari domain fixed the overestimation problem that appeared in
some of the games.

Another notable approach to Atari game playing is the boot-
strapped deep Q-network (DQN) [18], which proposes a novel and
computationally efficient method of exploration. Its main contribu-
tion is to find an alternative for simple, inefficient exploration strate-
gies, such as ε-greedy. To achieve this, bootstrapped DQN produces
distributions over Q-values instead of Q-values. Sampling from these
distributions allows the model to renounce using exploration strate-
gies.

The current state-of-the-art on Atari games is achieved using a
method called prioritized experience replay [19]. It starts from the
assumption that not all the transitions present in the replay memory
have the same importance. The agent learns more effectively from
some transitions, other ones being redundant, not relevant, etc. The
method proposes a prioritization regarding how often transitions are
used for updates in the network based on the magnitude of their tem-
poral difference (TD) error [24]. Prioritized replay leads to an im-
provement in 41 out of the 49 games, delivering human-level perfor-
mance in 35 of these games.

Although the aforementioned methods brought considerable im-
provements over the original deep reinforcement learning architec-
ture, there still are some Atari games for which none of the previ-
ously published methods are able to learn whatsoever. These games
feature a sparse reward space and are more complex in many aspects
than the vast majority of games from the Atari platform. We propose
a new method called human checkpoint replay that, when used to-
gether with deep reinforcement learning, is able to learn successful
policies for the most difficult games from the Atari platform, thus
resulting in significantly improved performance compared to prior
work.

3 BACKGROUND

Before proceeding to describe our approach, it is important to per-
form a more detailed analysis of the games used in our experiments;
the discussion focuses on highlighting some of the aspects that make
them so challenging. To evaluate our approach, we have chosen Mon-
tezuma’s Revenge and Private Eye - two of the most difficult games
from the Atari platform. Therefore our analysis focuses on these two
games; however the main points are also valid for other challeng-
ing games where there is no known learning policy which achieves a
better score than a random agent.

Figure 1. Screen shots from four Atari 2600 Games: (Left-to-right,
top-to-bottom) Breakout, Pong, Montezuma’s Revenge, Private Eye

3.1 Montezuma’s Revenge

Montezuma’s Revenge is a game from the Atari 2600 gaming con-
sole that features a human-like avatar moving across a series of 2D
rooms that form labyrinth. In order to advance in the game, the player
must move in a consistent manner, jump over obstacles, climb lad-
ders, avoid or kill monsters, and collect keys, jewels and other arti-
facts which provide a positive reward by increasing the game score.
Some of these collectible artifacts grant additional abilities - for ex-
ample, collecting a key enables the player to open a door upon con-
tact. However, after opening a door, the player loses the key and
needs to collect additional keys for opening any other doors. Other
collectible items include a torch which lights up dark rooms and
swords which kill monsters. The game consists of three levels, each
of them containing 24 rooms.

An important characteristic of the game is that collectible items are
sparse and thus the reward space is also very sparse. When the game
starts, in order to collect the first reward - represented by a key - the
avatar is required to descend on two ladders, walk across the screen
and over a suspended platform, jump over a monster and climb an-
other ladder. After collecting the key, the avatar needs to return close
to the starting point, where two doors are available which can now be
opened using the collected key. The player starts the game with five
”lives”, and each time it loses one life, the avatar is respawned in the
same room. For optimal play, a memory component is required, as
the player does not possess information about other rooms in terms
of rewards collected or monsters killed. The only information avail-
able on the screen apart from the environment is the game score,
the number of remaining lives and the artifacts currently held by the
avatar.

All current approaches using deep reinforcement learning fail to
learn any successful control policies for Montezuma’s Revenge. This
happens mostly due to the ε-greedy strategy failing to explore the
game in a consistent and efficient manner. Every four frames, a DQN
agent has to choose between 18 different actions. Given how, in order
to receive the first positive reward, the player is required to perform
a complex and consistent sequence of actions, using such a simple
exploration strategy makes learning virtually impossible. It is also
worth mentioning that the way in which such a simple strategy ex-
plores an environment like Montezuma’s Revenge does not resemble
the way in which a human player does it. This is due to two fac-



tors. First, there is a strong correlation between multiple successive
actions of a human player in the video game, even when the player
does not know how to play the game yet. This is because the ex-
ploration exhibited by a human player is not random, but influenced
by the current state of the environment. Second, a human player al-
ways makes use of commonsense knowledge when dealing with a
new learning task. This also influences the manner in which the hu-
man player explores a virtual environment, especially when it con-
tains elements resembling real-world objects (e.g. ladders, monsters,
keys, doors, etc.) For example, when the game avatar is located on a
ladder, a human player will only use the up and down actions without
having to learn to do so by exploring the game states. The player al-
ready knows, from real life, that other actions are not useful, as they
do not lead to other states in the game.

3.2 Private Eye

The second game chosen for our evaluation is Private Eye. It is a
game that features an avatar for a private investigator who is driving
a car that can move around and jump vertically or over obstacles. The
game environment can be seen as a labyrinth as well, as it consists
of multiple roads located in a city or in the woods. In the city there
are buildings near the roads, some of which play a special role in
the game. The objective of the game is to capture thieves that sit be-
hind the windows of different buildings. The thieves appear briefly
and the player must move and ”touch” the area near a thief in or-
der to capture him/her. Capturing thieves provides the player with
rewards and sometimes with special items, that must be returned to
specific buildings (e.g. bags of money need to be returned to the bank,
guns returned to the gun store). The player starts the game with 1000
points, but is penalized if he bumps into obstacles like birds and mice,
or is attacked by thieves. The concept of multiple lives is not present
in this game, however there is a three minute time cap for solving a
game level; when the time limit has been reached, the game ends.

The game features similar exploration difficulties present in Mon-
tezuma’s Revenge. As a consequence, this game has also proven to
be a challenge for current deep reinforcement learning methods. The
presence of a memory component for optimal play is even more im-
portant, as the player must travel long distances between collecting
game items and dropping them at the appropriate locations. Some
portions of the game look identical, and there is also a certain order
in which the tasks should be carried out. For example, the game fea-
tures a thief that must be captured and brought to the police building,
but this can only be done after all the items in the current level have
been returned where they belong. Capturing this final thief provides
the highest in-game reward.

3.3 Discussion

The more challenging games from the Atari console (such as Mon-
tezuma’s Revenge and Private Eye) present a particular difficulty
compared to the simpler ones: the agent is not penalized for standing
still. This could be yet another factor that further prevents efficient
exploration. In contrast, for games like Breakout or Pong (Figure 1),
repeatedly choosing the no-op action will quickly lead to the end of
the game or to losing points. The agent can thus learn to avoid this
action, as it will be associated with a low utility value.

4 DEEP REINFORCEMENT LEARNING WITH
HUMAN CHECKPOINT REPLAY

In this section we provide a description of the methods that we pro-
pose for training deep reinforcement learning agents on the Atari do-
main, as well as the architecture of the convolutional network that we
used for the training process.

4.1 Deep Reinforcement Learning

Deep reinforcement learning [15, 16] was the first method able to
learn successful control policies directly from high-dimensional vi-
sual input on the Atari domain. It consists of a convolutional neural
network that extracts features from the game frames and approxi-
mates the following action-value function

Q∗(a, b) =

max
π

E[rt + γrt+1 + γ2rt+2 + ... | st = s, at = a, π] (1)

The computed value represents the sum of rewards rt discounted
by γ at each time step t, using a policy π for the observation s and
action a. To solve the instability issue that reinforcement learning
presents when a neural network is used to approximate the state-
value function, experience replay [14] is used, as well as a target
network [16]. In order to train the network, Q-learning updates are
applied on minibatches of experience, drawn at random from the re-
play memory. The Q-learning update at iteration i uses the following
loss function

Li(θi) =

E(s,a,r,s′)∼U(D)[(r + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2] (2)

Here γ is the discount factor determining the agents horizon, θi
are the parameters of the Q-network at iteration i and θ−i are the
network parameters used to compute the target at iteration i. Differ-
entiating the loss function with respect to the network weights gives
the following gradient:

∇θiL(θi) = Es,a,r,s′ [(r + γmax
a′

Q(s′, a′; θ−i )−

−Q(s, a; θi)∇θiQ(s, a; θi)]. (3)

Our proposed approaches use the deep reinforcement learning ar-
chitecture from [16]. Almost all the hyperparamaters have the same
values, with the exception of the final exploration frame, for which
we used a value of 4, 000, 000 instead of 1, 000, 000. We empirically
found that using this value results in a slightly better performance of
the agents. This may be caused by the fact that the most difficult
games are also characterized by greater complexity and size of the
state space, therefore a slower annealing of ε may be helpful. Due
to hardware limitations and the amount of time required for training
deep Q-networks, we did not test for other values of this hyperpa-
rameter. Another structural difference we need to mention is the fact
that, for the human experience replay method presented next, we em-
ployed an additional replay memory.



4.2 Human Checkpoint Replay

For the most difficult games from the Atari platform that are charac-
terized by sparse rewards, the original deep reinforcement learning
approach [15, 16] is not able to achieve positive scores. Thus the
agents trained using deep reinforcement learning perform no better
than a random agent. As seen in the previous section, these games
start in a state from which reaching the first reward is a long and
challenging process for any player which does not possess any prior
knowledge (such as commonsense world knowledge). Also consid-
ering the 18 actions available to the agent in each state, the ε-greedy
strategy fails to find any game paths to a first state with positive re-
ward. This hinders the convolutional neural network to learn rele-
vant features to separate reward-winning states and actions from the
bulk. Drawing inspiration from curriculum learning [5] and the hu-
man starts evaluation metric used for testing Atari agents [17], we in-
troduce the human checkpoint replay method. This consists of gener-
ating a number of checkpoints from human experience in the Arcade
Learning Environment [3] and storing them to be used as starting
points for the training of deep reinforcement learning agents. Instead
of resetting the environment to the beginning of the game each time
a game episode ends, a checkpoint is randomly sampled from the
checkpoint pool and restored in ALE.

The intuition behind this approach is that at least some of the
checkpoints will have a reward located close enough in the game
space for the ε-greedy strategy to be able to reach it. This way, the
convolutional neural network is able to learn relevant features from
the game frames and then successful control policies. As the train-
ing process advances, these will help the agent to become gradually
more capable to reach rewards that are located farther away from the
start state. Our method can also be thought of as being related to the
planning concepts of landmarks [12] and probabilistic roadmaps [1].

4.3 Human Experience Replay

As a possible solution to the inefficiency of ε-greedy exploration in
sparse reward environments, we also proposed training a deep rein-
forcement learning agent using offline human experience, combined
with online agent experience. We dubbed this approach human ex-
perience replay. It consists of storing human gameplay experience
in same form of (s, a, r, s′) tuples in a separate replay memory and
using it along with the original replay memory containing agent ex-
perience. This is meant to provide the agent with training samples
that result in a positive reward, therefore making learning possible in
environments that feature a sparse reward signal. The training pro-
cess consists of repeatedly sampling a minibatch composed of both
human transitions and agent transitions.

5 EXPERIMENTS

This section provides a thorough description of the experiments
performed using our proposed approach for the two selected Atari
games, Montezuma’s Revenge and Private Eye. As mentioned ear-
lier, we have chosen these two games because they are among the
most challenging games on the Atari platform, even for human play-
ers. At this point no computer strategy has been able to learn an ex-
ploration technique which is better than a random agent, mainly due
to the fact that no strategy is able to learn a solution which is able
to reach any reward in the game. Therefore, any progress made to-
wards solving these games will provides useful insights in the quest
of developing general purpose agents.

Figure 2. The two plots show the average maximum predicted
action-value during training for our HCR DQN method on Montezuma’s

Revenge (left) and Private Eye (right)

5.1 Human Checkpoint Replay
The Arcade Learning Environment provides the capability of gener-
ating checkpoints during gameplay. These make it possible to con-
tinue running an environment from a given state at a later time by
restoring a specific checkpoint in the emulator. The checkpoint con-
sists of the memory content of the Atari 2600 console.

For the human checkpoint replay method (HCR DQN), we gen-
erated 100 checkpoints from a human player’s experience for each
game, stored them in an external file and then used them as starting
points for the environment at training time, as well as for testing. The
checkpoints that we used for training and testing, as well as the code
for training deep reinforcement learning agents with human check-
point replay, are publicly available 3. We trained our networks using
the generated checkpoints and performing Q-learning updates as de-
scribe in [16] for 50 million frames on each game. The two plots in
Figure 2 show how the average predicted Q evolves during training
on the games Montezuma’s Revenge and Private Eye.

As discussed in section 3.3, in difficult games such as Mon-
tezuma’s Revenge and Private Eye, the avatar is not penalized for
repeatedly choosing the no-op action. This raises two major issues.
First of all, efficient exploration is prevented due to the neutral effect
of repeatedly taking the no-op action. Also, in a deep reinforcement
learning setting in which experience replay is used, by repeatedly
choosing the no-op action, the replay memory will consistently be
filled with transitions that are not relevant for the learning process.
In order to avoid this outcome, we limit each training episode to 1800
frames, corresponding to 30 seconds of gameplay. By doing this, we
make sure that the replay memory is populated with transitions that
are relevant for the training process, as the agent will eventually be
placed in checkpoints from which rewards are more easily accessi-
ble.

5.2 Human Experience Replay
Using ALE, we generated 1.2 million frames of human experience
(about 5.5 hours of gameplay) for Montezuma’s Revenge, consisting
of (s, a, r, s′) transition tuples. Human experience transitions were
stored in an additional replay memory during training. We performed
Q-learning updates for 15 million frames on minibatches of size 32,
composed of 16 samples of human experience and 16 samples of
online agent experience. Due to the long training times required for
training deep Q-networks and the cumbersome process of generating
multiple hours of human experience, we only tested this approach on
Montezuma’s Revenge.

3 Code and checkpoints are available here:
https://github.com/ionelhosu/atari-human-checkpoint-replay



5.3 Evaluation procedure

In this paper, we used the human starts evaluation metric [17] to test
the performance of the agents. The metric consists of using random
checkpoints sampled from human experience as starting points for
the evaluation of an agent. More specifically, we use a set of 100
checkpoints as human-generated start frames. In order to prove the
robustness of our agent, the set of checkpoints used for evaluation
are different than the ones that were used for training. This evalua-
tion method averages the score over 100 evaluations of 30 minutes
of game time. The value of ε was fixed to 0.05 throughout the evalu-
ation process.

The random agent’s scores were obtained using the same eval-
uation procedure. However the next action to be performed in the
environment was sampled from an uniform distribution.

5.4 Quantitative Results

As it can be observed in Table 1, the human checkpoint replay
method provides a substantial improvement over a random agent for
both games. In Montezuma’s Revenge it obtains more than double
the points of a random agent. In Private Eye, a random agent is not
able to obtain a positive score, due to the multitude of negative re-
wards present in the game which the agent is not able to avoid. Our
HCR DQN agent obtains significantly better results, demonstrating
the success of this approach.

Compared to the HCR DQN agent, the human experience replay
method provides only slightly better performance over a random
agent in Montezuma’s Revenge. Due to sparsity of rewards during
the game, human experience alone cannot provide enough transitions
that lead to positive rewards in order to facilitate learning, although
it does provide a slightly better exploration compared to the random
agent.

Table 1. Results obtained by our methods, human checkpoint replay (HCR
DQN) and human experience replay (HER DQN) on Montezumas Revenge
and Private Eye. The results represent raw game scores and were obtained

using the human starts evaluation metric.

Random Agent HCR DQN HER DQN

Montezuma’s Revenge 177.1 379.1 218

Private Eye –41 1264.4 N/A

5.5 Qualitative Results

We can draw better insights in the exploration of the agents by tak-
ing a closer look on the actions chosen by an agent. For Montezuma’s
Revenge, the HCR DQN agent is successfully collecting nearby re-
wards for all start points. For example, in the initial room of level 1,
it successfully learns to climb the leftmost ladder in order to get the
key. However, the agent still does not learn to avoid monsters and
objects that lead to hypothetical negative rewards (such as losing a
game life). This is mostly due to the fact that the game does not fea-
ture any negative rewards seen as changes in the score. This makes
it even more difficult to find a successful exploration policy. While
ALE offers this possibility, we did not provide our agents with an ad-
ditional reward signal which penalizes the agent when it loses a life.
It is also important to mention that in the majority of ALE check-
points generated for training on Montezuma’s Revenge there is no

reward nearby. As a consequence, this set of checkpoints will con-
tinue to provide a challenge for future architectures, as it preserves
much of the game’s initial difficulty.

In Private Eye, the HCR DQN agent successfully collects most
of the nearby rewards, and is seen successfully avoiding objects that
lead to negative rewards. The agent does a great job at the latter task,
especially as some of the negative rewards the avatar must avoid are
moving fast and in an unpredictable manner, making this a difficult
task even for human players.

5.6 Discussion
Using human checkpoint replay might be seen as a trade-off for de-
veloping general game playing agents. The main objection would be
that the agent uses human-generated start points for training the ex-
ploration model, which can be seen by some as an ”deus ex-machina”
intervention for the agent. However, the checkpoint replay merely
provides additional starting points and does not offer an understand-
ing of the explored game. It uses the experience of a human player to
reach ”easier” starting points, but for more difficult games this kind
of intervention might be needed.

We should take into consideration that human players also make
use of commonsense knowledge for these more difficult games. Us-
ing checkpoint replay does not bring any of this prior knowledge
directly to the agent, maybe only in an indirect fashion as the human
used it to get to that specific game positions.

6 CONCLUSION
In this paper we presented a novel method using deep reinforcement
learning, called human checkpoint replay, which was designed for
some of the most difficult Atari 2600 games from the Arcade Learn-
ing Environment. Our experiments show a substantial improvement
compared to all previous learning approaches, as well as over a ran-
dom player. Our method draws inspiration from curriculum learning
and it serves the purpose of compensating for the difficulties of cur-
rent exploration strategies to find successful control policies in envi-
ronments with sparse rewards.

As the results show, this method is a promising path of research.
We will continue to study other approaches that deal with incentiviz-
ing and facilitating exploration in the most difficult games from the
Atari platform. We believe that successfully learning control policies
in such environments is closely related to the problem of achieving
artificial general intelligence as in most real-life situations rewards
are not encountered very frequently.

REFERENCES
[1] Ali-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Am-

ato, ‘Firm: Sampling-based feedback motion planning under motion
uncertainty and imperfect measurements’, The International Journal of
Robotics Research, 0278364913501564, (2013).

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan C. Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley,
Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama,
Jun Zhan, and Zhenyao Zhu, ‘Deep speech 2: End-to-end speech recog-
nition in english and mandarin’, CoRR, abs/1512.02595, (2015).

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling,
‘The arcade learning environment: An evaluation platform for general
agents’, Journal of Artificial Intelligence Research, (2012).



[4] Marc G Bellemare, Joel Veness, and Michael Bowling, ‘Investigating
contingency awareness using atari 2600 games.’, in AAAI, (2012).
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FraMoTEC: Modular Task-Environment Construction
Framework for Evaluating Adaptive Control Systems

Thröstur Thorarensen,1 Kristinn R. Thórisson,1,2 Jordi Bieger1 and Jóna S. Sigurðardóttir2

Abstract. While evaluation of specialized tools can be restricted to
the task they were designed to perform, evaluation of more general
abilities and adaptation requires testing across a large range of tasks.
To be helpful in the development of general AI systems, tests should
not just evaluate performance at a certain point in time, but also fa-
cilitate the measurement of knowledge acquisition, cognitive growth,
lifelong learning, and transfer learning. No framework as of yet of-
fers easy modular composition and scaling of task-environments for
this purpose, where a wide range of tasks with variations can quickly
be constructed, administered, and compared. In this paper we present
a new framework in development that allows modular construction
of physical task-environments for evaluating intelligent control sys-
tems. Our proto- task theory on which the framework is built aims for
a deeper understanding of tasks in general, with a future goal of pro-
viding a theoretical foundation for all resource-bounded real-world
tasks. The tasks discussed here that can currently be constructed in
the framework are rooted in physics, allowing us to analyze the per-
formance of control systems in terms of expended time and energy.

1 INTRODUCTION

To properly assess progress in scientific research, appropriate evalu-
ation methods must be used. For artificial intelligence (AI) we have
task-specific benchmarks (e.g. MNIST [21]) for specialized systems
on one end of the spectrum and—proposed yet controversial—tests
for more general human-level AI (e.g. the Turing test [40]) on the
other end. Little is available on the middle ground: for systems that
aspire towards generality, but are not quite close to human-level in-
telligence yet. A major goal of AI research is to create increasingly
powerful systems, in terms of autonomy and ability to address a
range of tasks in a variety of environments. To evaluate the general
ability and intelligence of such systems, we need to test them on a
wide range of realistic, unfamiliar task-environments [17]. To cover
the entire spectrum of AI systems, we want to be able to analyze,
compare and adapt the task-environments that we use [36].

A prerequisite to evaluating systems is the construction of task-
environments. It has been suggested that successful regulation or
control implies that a sufficiently similar model must have been built
(implicitly or explicitly) [9, 32]. It is important for AI to understand
how the construction of models of task-environment works: for eval-
uation, for the model-building (learning) and decision-making that
goes on in the “mind” of a successful controller, and for the design
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process where match between agent and task must be considered.
Tasks truly are at the core of AI, and in another paper (under re-
view) we argued for the importance of a “task theory” for AI [37].
Other (engineering) fields often have a strong understanding of the
tasks in their domains that allows them to methodically manipulate
parameters of known importance in order to systematically and com-
prehensively evaluate system designs. A task theory for AI should
provide appropriate formalization and classification of tasks, envi-
ronments, and their parameters, enabling more rigorous ways of mea-
suring, comparing, and evaluating intelligent behavior. Analysis and
(de)construction capabilities could furthermore help any controller
make more informed decisions about what (sub)tasks to pursue, and
help teachers manipulate or select environments to bring about opti-
mal learning conditions for a student [4].

Here we present an early implementation of a framework for the
construction of modular task-environments for AI evaluation, based
on the initial draft of a task theory. The modular nature of the con-
struction makes it easy to combine elementary building blocks into
composite task-environments with the desired complexity and other
properties. It allows us not only to make simple variants on existing
task-environments to test generalization ability and transfer learning,
but also to measure (learning) progress by scaling environments up
or down (e.g. by adding/removing building blocks). The framework
is aimed at general systems that aspire to perform real tasks in the
real world. Such systems have bounded resources that they must ad-
equately manage, so we take a special interest in the amount of time
and energy they use to perform assigned tasks. Since we are mainly
interested in assessing cognitive abilities, the agent’s body is defined
as part of the task-environment so that we can evaluate the perfor-
mance of the agent’s controller (i.e. its “mind”).

2 RELATED WORK

Since the inception of the field of AI, the question of how to evaluate
intelligence has puzzled researchers [40]. Since then a lot of work in
the area has been done [22, 17, 25]. Most AI systems are developed
for a specific application, and their performance is easily quantifiable
in domain-specific terms. Evaluation of more general-purpose algo-
rithms and systems has always been more difficult. A common strat-
egy is to define benchmark problems (e.g. MNIST written character
recognition [21] or ImageNet object detection challenges [10]), AI-
domain-restricted contests (e.g. the Hutter compression prize [19],
planning competitions [8] or the DARPA Grand Challenge [39]) or
iconic challenges (e.g. beating humans at chess [7] or Go [33]) in
the hope that performance on these manually selected problems will
be indicative of a more general kind of intelligence. These methods
are good at evaluating progress in narrow domains of AI, where they



encourage innovation and competition, while also—unfortunately—
encouraging specialized approaches for overfitting on the evaluation
measure.

Many methods aimed at more general intelligence exist as well.
Many researchers have turned to theories of human psychology and
psychometrics to evaluate AI systems, resulting in human-centric
tests (e.g. the Turing Test [40], the Lovelace Tests [5, 27], the
Toy Box Problem [20], the Piaget-MacGuyver Room [6] and AGI
Preschool [14, 15]; see also the latest special issue of AI Maga-
zine [25]). These tests tend to either be very subjective, very human-
centric or only provide a roughly binary judgment about whether the
system under test is or is not (close to) human-level intelligent. They
are again applicable to only a narrow slice of AI systems, which in
many cases don’t exist yet (i.e. we have no human-level AI that can
genuinely pass most of these tests).

What we need is a way of evaluating AI systems that aspire to-
wards some level of generality, but are not quite there yet [36].
Hernández-Orallo argued that in order to assess general intelligence,
that the assessment should cover the testing of a range of abilities
required for a range of tasks [17]. What is needed then is a battery of
tasks that can be used to evaluate the cognitive abilities of a system.
Ideally, this battery of tasks should be suitable to the system we want
to test, but still comparable to tasks that are used on other systems.

The importance of using a range of tasks that are unknown to
AI system designers is widely—although not nearly unanimously—
recognized. For instance, the 2013 Reinforcement Learning Compe-
tition [42, 1] included a “polyathlon” task in which learning systems
were presented with a series of abstract but related problems. We see
the same in other competitions: the General Game Playing compe-
tition [12] presents contestants with the description of a finite syn-
chronous game only moments before it needs to be played, and the
General Video Game AI competition [24] does the same with video
games. These competitions are very interesting, but their domains
are still fairly restricted, the adversarial nature makes progress evalu-
ation between years tricky, and the “tasks” each need to be carefully
constructed by hand.

To really be able to evaluate a wide range of AI systems well,
it is necessary that tasks—and variants of those tasks—can eas-
ily be constructed or preferably generated. Hernández-Orallo advo-
cates this approach, but only covers discrete and deterministic envi-
ronments [16, 18]. Legg & Veness developed an “Algorithmic IQ”
test that attempts to approximate a measure of universal intelligence
by generating random environments [23]. Unfortunately these meth-
ods cannot easily generate complex structured environments and are
opaque to analysis and human understanding. Our own prior work
on the MERLIN tool (for Multi-objective Environments for Rein-
forcement LearnINg) [11] followed in the footsteps of other Markov
Decision Process generators like PROCON [2] and GARNET [3].
While Merlin does support using continuous state and action spaces
and somewhat tunable environment generation, it fails to meet most
of the requirements below.

In [36] we listed a number of requirements for the comprehen-
sive evaluation of artificial learning systems. An ideal framework
ought to cover the complete range of AI systems—from very sim-
ple to very advanced. Performance of various systems on different
tasks should be comparable, so as to differentiate between differ-
ent systems or measure progress of a single system. Such a frame-
work would not only facilitate evaluation of the performance of cur-
rent and future AI systems, but go beyond it by allowing evalua-
tion of knowledge acquisition, cognitive growth, lifelong learning,
and transfer learning. Most importantly, it should offer easy con-

struction of task-environments and variants, the ability to procedu-
rally generate task-environments with specific features, and facili-
tation of analysis in terms of parameters of interest, including task
complexity, similarity and observability. Easy construction includes
the ability to compose, decompose, scale and tune environments in
terms of parameters like determinism, ergodicity, continuousness,
(a)synchronicity, dynamism, observability, controllability, simulta-
neous/sequential causal chains, number of agents, periodicity and re-
peatability.

The framework we present here is a prototype aimed towards the
requirements outlined above. Section 7 will elaborate on this more,
as we evaluate our success so far.

3 TASK THEORY
The concept of task is at the core of artificial intelligence (AI): tasks
are used in system evaluation, training/education and decision mak-
ing. Tasks can vary from the classification of an image, to the clus-
tering of data points, and to the control of a (physical or virtual) body
to cause change in an environment over time. It is the latter kind of
task that we are primarily concerned with here.

Most AI systems are designed to perform a specific kind of task,
and most systems require a set of concrete tasks to train on in order
to learn to later perform similar tasks in production. This requires the
collection or construction of appropriate task examples.

Systems that aspire to a more general kind of intelligence aim
to tackle a wide range of tasks that are largely unknown at design
time. Upon deployment these systems are intended to not rely on
their designer to decompose their future tasks into component parts
and elementary actions – they will need to choose among different
decompositions and (sub)tasks themselves, in terms of both priority
(benefits) and feasibility (costs). Evaluation of more general cogni-
tive abilities and intelligence can not simply be done by measuring
performance on a single target task: we could just develop a spe-
cialized system for that3. Rather, we need a battery of tasks that can
be modified to grow with the systems under test and facilitate the
measurement of knowledge acquisition, cognitive growth, lifelong
learning, and transfer learning.

While we don’t have fully general systems yet, different systems
will need to be evaluated on different task batteries, and we need
the flexibility to tailor those to the systems under test and the ability
to compare performance on various tasks in order to compare dif-
ferent AI systems. Yet in most cases tasks are selected ad hoc, on a
case-by-case basis without a deep understanding of their fundamen-
tal properties or how different tasks relate to each other. We have
argued elsewhere for the importance of a “task theory” for AI [37].
Such a theory should cover all aspects of tasks and the environments
that they must be performed in, and cover:

1. Comparison of similar and dissimilar tasks.
2. Abstraction and reification of (composite) tasks and task elements.
3. Estimation of time, energy, cost of errors, and other resource re-

quirements (and yields) for task completion.
4. Characterization of task complexity in terms of (emergent) quan-

titative measures like observability, feedback latency, form and
nature of information/instruction provided to a performer, etc.

5. Decomposition of tasks into subtasks and their atomic elements.

3 Unless the single target task is AI-complete (c.f. the Turing test and similar
tests), but these are typically only applicable to a very narrow range of
intelligence (i.e. humanlike intelligence), and no current systems can pass
these tests.

2



6. Construction of new tasks based on combination, variation and
specifications.

To accomplish all of this we need some way to formalize task-
environments. Here we only give an overview of our initial attempt;
for more detail see [37].

At the highest level, we use a tuple of task and environment—
similar to Wooldridge’s 〈Env,Ψ〉 [43], where Ψ represents the cri-
teria by which success will be judged. As a first approximation a task
may be formulated as an assigned goal, with appropriate constraints
on time and energy. Wooldridge [43] defines two kinds of goals, what
might be called achievement goals (“Ensure X ≈ GX before time
t ≥ 10”) and maintenance goals (“Ensure X ≈ GX between time
t = 0 and t = 10).4 By introducing time and energy into the success
criteria, this disparity is removed: Since any achieved goal state must
be held for some non-zero duration (at the very minimum to be mea-
sured as having been achieved) an achievement goal is simply one
where the goal state may be held for a short period of time (relative to
the time it takes to perform the task which it is part of) while a main-
tenance goal is held for relatively longer periods of time. The highest
attainable precision of a goal state is defined by the laws of physics
and the resolution of sensors and actuators. Performing a task in the
real world requires time, energy, and possibly other resources such
as money, materials, or manpower. Omitting these variables from the
task model is tantamount to making the untenable assumption that
these resources are infinite [41]. Including them results in a unified
representation of goals where temporal constraints on the goal state
are provided.

Any action, perception and deliberation in the real world takes up
at least some time and energy. Limitations on these resources are
essentially the raison d’être of intelligence [35]—unbounded hypo-
thetical systems will randomly stumble upon a solution to anything
as time approaches infinity. Estimation of time, energy and other re-
source requirements (and yields) for task completion can be used to
design effective and efficient agent bodies, judge an agent based on
comparative performance, and make a cost-benefit analysis for de-
ciding what (sub)tasks to pursue.

For the environment part of our formalization we take inspiration
from Saitta & Zucker [30]. The environment description contains
variables describing objects in the world, as well as transition func-
tions to describe the dynamics. Environments are considered per-
spectives on the world, and can be nested within each other if de-
sirable, resulting in a certain amount of modularity. Since we are
mainly interested in creating systems with advanced cognitive abili-
ties, we define sensors and actuators simply by listing observable and
controllable variables. This essentially places the agent’s body inside
the environment. From an evaluation perspective, this allows us to
focus on the agent’s controller (mind). From a task analysis point of
view this allows to make statements about physical limits and feasi-
bility without needing to consider the unknown cognitive abilities of
a controller.

4 FRAMEWORK
Our Framework for Modular Task-Environment Construction
“FraMoTEC” enables the construction and simulation of task-
environments in a modular way. An early prototype has been imple-
mented in Python in an object-oriented manner, using a layered com-

4 We use approximate rather than precise equivalence between X and its
goal value GX because we intend for our theory to describe real-world
task-environments, which always must come with error bounds.

position of small building blocks to describe entire environments.5 To
aid in the explanation of our framework and its various components,
we use the following running example of a task-environment:

Example 1 (Car Race). A one-dimensional race is our simplest ver-
sion. The agent must move a car across the finish line N meters
away from the starting position. The controller determines the rate
of energy expenditure, which results in higher or lower acceleration
(pressing the gas pedal more increases the flow of fuel to the engine
and through that the amount of energy that is converted in order to
move the vehicle). Naturally the race must be finished using as little
time as possible and using an amount of energy that doesn’t exceed
what is available from the gas tank.

Example 2 (Car Parking). Example 1 can straightforwardly be con-
verted to a parking task if we require the car to end up between two
points (rather than across a finish line), or extended by e.g. adding a
second dimension or adding/removing friction and air resistance.

4.1 Components
Constructing task-environments requires using the building blocks
provided by the framework. These building blocks are designed to
be as basic as possible to allow for a wide variety of behaviors to
emerge from the different combinations of organization of the blocks.
Most of the organizational complexity of the resulting tasks emerges
from the various combinations of objects with custom transitions.
The following components have been incorporated: objects, transi-
tions, systems, goals, motors and sensors. When all building blocks
come together they form what is finally called the “model”—i.e. the
complete representation of the task-environment (and by extension,
the natural system that the model represents).

Objects Objects are used to describe the “things” in a task-
environment model, such as the car in the race example. The frame-
work implements basic one-dimensional kinematics individually for
each object. Objects have a main value x (in the example corre-
sponding to the car’s position) as well as physical properties like
velocity v, massm, friction µk and might even contain val-
ues for gravitational acceleration at some angle θ. This allows the
object to naturally transition (as will be explained below): the new
velocity is computed based on the current velocity and the
input power P (and direction) from any affectors, which is then used
to update the main value, as shown by these physics equations:

Finput =
P

v

Fgravity = −mg · sin θ
Ffriction = − sgn v · µkmg · cos θ

Ftotal = Finput + Fgravity + Ffriction

v ← v + δt · Ftotal

m

x← x+ δt · v
where g is the gravitational constant and δt is the (theoretically

infinitesimal) time over which the framework calculates each change.
Although the framework does not currently implement other ob-

ject behavior, we envision extending the framework as experience
with it accumulates.
5 The FraMoTEC code is available at https://github.com/ThrosturX/task-env-

model.
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Transitions Transitions or transition functions are used to change
the (values of) objects in the task-environment. Transitions come in
two forms: the natural form and the designed form. Natural transi-
tions describe the natural change of the objects and systems in the
task-environment. They are provided by the framework and executed
automatically during simulation unless this is explicitly prevented.
Transitions that are specified by the task-environment designer ex-
pand upon the natural behavior of an environment by adding custom
logic to it without requiring the framework to be extended specif-
ically. We could for example implement a transition that causes
the car in our race example to lose mass as its energy is depleted:
t mass: car.mass ← 1200 + car.energy / 46000.

Motors Motors can be considered “effectors” or “actuators” of the
controller, which it can directly interact with to affect the environ-
ment, to achieve goals and perform tasks. The controller sets the rate
at which energy is transferred to each such motor (we refer to this en-
ergy transfer rate as “power”). When connected to an object (as they
typically are), this energy is converted into a force that affects an
object’s current velocity. Motors can be placed in systems of ob-
jects with custom transitions to create new behavior. For instance, to
add more realistic steering controls, instead of letting the controller
use independent motors to affect the x and y position directly, we
could add motorized orientation and speed objects, plus these
transitions:

• x.velocity← speed.velocity·cos (orientation.value)
• y.velocity← speed.velocity ·sin (orientation.value)

Sensors Standardized access to objects’ values can be provided
via sensors. A sensor reads an object’s value, optionally applying
some distortion due to noise or limited resolution. Sensors can also
read other sensors, allowing designers to combine observations or
apply multiple layers of distortions.

Systems Systems facilitate composition immensely by acting as
a container for objects, transitions, sensors, motors and other ele-
ments. The natural transition of a system is to apply all transitions
within. Systems can be used to create a hierarchy of larger build-
ing blocks that can easily be reused and rearranged. For instance, we
could create a system to encapsulate the above object car and tran-
sition t mass so that more cars whose mass depends on the contents
of their fuel tank can easily be made. Or, when we define a car that
can move in two dimensions, we need separate objects for the posi-
tion in each dimension. We could make a system with two objects—
for x position and y position—and motors to control each
dimension separately (this would perhaps be more reminiscent of a
helicopter) or motors for controlling speed and angle of the wheels.
One kind of “car” could easily replace another kind in a larger sys-
tem, without affecting everything else, making it easy to create slight
variations. “Inaccessible” objects or other constructs can also be cre-
ated, whose value is inaccessible directly via sensors. This facilitates
the theoretical creation of systems with hidden states.

Goals Goals are used to define tasks that the controller must per-
form. A goal specifies a target object X along with a goal value GX ,
tolerance ε and time restrictions. Tolerance values should be used
because all measurements are constrained by real-world resolution.
Time restrictions should allow the user to specify before and after
which (absolute and relative) times the target value needs to be in
the goal range. Goals can also depend on other goals to be satisfied

(i.e. the goal can require other goals to be met before it can con-
sider itself satisfied). This allows users to easily define composite
tasks by sequencing goals. Once a goal has been satisfied, it is for-
ever considered satisfied unless it is reset, in which case both the
goal itself and any goals it was a prerequisite will be reset recur-
sively. This allows the state of the task to be evaluated based on the
number of achieved goals without regarding the environment’s cur-
rent state. In the car race example we might define a goal that says
GX − ε ≤ car.value ≤ GX + ε ∧ t ≤ 10. Since the task is
accomplished as soon as the goal becomes satisfied for the first time,
tolerance could be set to zero. For the parking task, we might
add a goal that says 0 − ε ≤ car.velocity ≤ 0 + ε and add it
as a prerequisite to the other goal to demand that the car is stopped
at the end.

Task-Environment Model Finally, a model of an entire task-
environment is created that can be run by the framework. The task
part consists of a set of goals plus additional restrictions on time and
energy. The environment is a system that contains all relevant ob-
jects, transitions, sensors and motors.

5 Task Construction
Tasks are constructed modularly using the smallest possible con-
structs, as building blocks with peewee granularity provide the most
flexibility [38]. The simplest conceivable task-environment is essen-
tially specified in our car race example: the environment is a single
system containing one object with an associated motor and sensor,
and the task simply specifies a single goal value for the only object
along with some restrictions on time and energy. We can construct
more complicated tasks by adding more objects, sensors and mo-
tors to the environment. We can enforce systems’ behavior as desired
by implementing appropriate transitions. We can for example create
a system in which objects X and Y move independently except if
Y < 20 by implementing a transition that checks if Y < 20, lock-
ing X in place (freezes it’s state) if so, and unlocking it otherwise:
transition lock-x : X.locked← Y.value ≥ 20.

The framework has some built-in randomization options, allowing
designers to set ranges of options for the values of objects and goals.
This allows us to easily generate a set of different but highly similar
concrete tasks that can be used to train or evaluate a system on the
general idea of a task family, rather than just having it memorize the
specifics of a single task.

5.1 Simulation
In order to evaluate or train intelligent controllers, it is important
that the constructed task-environments can be executed or simulated.
The designers of task-environments ultimately produce formalizable
models—this is a natural implication of the framework building on
simple, simulable causal processes (the building blocks and their in-
teraction). A simulation of the model becomes a simulation of the
natural system that the model represents, transmuting Church’s thesis
into an assertion (all systems that can be modeled by the framework
are simulable) [28].

In order to simulate a task-environment, its model needs to be
connected to a controller. Since different controllers have different
requirements, this is largely left up to the user. FraMoTEC is imple-
mented in the Python programming language and provides a simple
API on the task-environment model. The typical method of usage
would be to construct and instantiate a task-environment model as
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well as a control system—here we will use the example of a SARSA
reinforcement learner. The user is free to access all aspects of the
task-environment and should use this access to define the interac-
tion with the controller in any way that they like. For instance, some
implementations of table-based SARSA systems may need to be in-
stantiated with knowledge of the range of possible actions and obser-
vations.

The task-environment model provides a tick method that takes
delta time as an argument. Whenever this method is called, the
framework will run the simulation for delta time seconds. When
the method returns, the user can easily obtain the values from sen-
sors to pass on to the controller. At this point it is also possible to
e.g. compute a reward based on values from the sensors or other in-
formation that the user can access about the current state of task and
environment. It should be noted that the framework itself does not
yet support explicit rewards.6 Not every control system requires ex-
plicit or incremental rewards; for more powerful learners rewards for
ought to be intrinsic [34, 31, 13, 26]. Having said that, it is trivial
to implement rewards via a special kind of sensor designated as a
reward channel, and to possibly couple this with the state of goal
achievement, which is of course tracked within the system. The user
could then pass on the actions of the controller to the motors of the
task-environment before calling tick again. This fully synchronous
mode of interaction is required by most reinforcement learners, but
FraMoTEC could also run simulations asynchronously if the con-
troller supports it.

The simulation component of the framework would ideally be
truly continuous, but the nature of the Von Neumann architecture
encourages stepwise integration. delta time can be viewed as the
time resolution of the controller. The task-environment model has its
own time resolution dt. As such, every simulation step regardless of
length should optimally ensure that:

• For all systems: naturally transition for dt seconds—recall that
any system’s natural transition fires all transitions within.

• For all objects: naturally transition for dt seconds
• Goals should be asserted to evaluate whether success (or failure)

conditions have been met
• The time passed during the frame must be recorded and added to

an accumulator
• The energy used by any motor during that time frame should be

recorded and added to an accumulator
• Current time and energy usage should be compared with time and

energy limits

5.2 Analysis
In the current prototype implementation FraMoTEC offers limited
functionality for analyzing task-environments and the performance
of controllers. For a given task, the framework can produce a time-
energy tradeoff plot (Pareto curve) that shows the minimal amount of
energy that is required to finish the task in a given amount of seconds
(or alternatively: the fastest the task can be completed given a certain
amount of expended energy).

As previously established, time and energy usage are key met-
rics to consider when evaluating the performance of controllers in
a given set of task-environments. It goes without saying that a con-
troller that spends 2 minutes and 20 KJ of energy to solve a specific
6 Rewards are appropriately seen as part of the information/training materials

for a task, not as part of the task proper (although one may argue that a task
will change drastically, perhaps fundamentally, depending on what kind of
information is given about it up front and during its learning/performance).

task-environment is worse at completing the task than a controller
that spends 30 seconds and 700 J in that same task-environment.
Maybe the first controller spent more time actually learning about
the environment, in which case it might be much better suited for a
set of similar task-environments than the second controller.

Naturally, we can continuously measure the time and energy ex-
penditure of an controller to quantify the total amount of time and
energy required to come up with a solution to some task. In this sense
we are not evaluating a controller’s ability, but its ability to improve
some ability (i.e. the controller’s ability to learn). We can further ex-
tend both these evaluation methods to a set of tasks in lieu of a single
task, allowing for a more comprehensive evaluation and comparison
of all kinds of controller.

After simulation, successful attempts by the controller that re-
sulted in completing the task can be added to the graph to com-
pare time and energy usage compared to each other and the optimal
Pareto curve. Different runs are color-coded according to the time at
which they occurred (earlier attempts are lighter, while later ones are
darker), which shows a controller’s (hopefully improving) behavior
over time.

6 USE CASES
In this section we will showcase some simple use cases of the system.
Since this paper is not about advanced control systems themselves,
we will use a simple SARSA reinforcement learner [29] and some
domain-specific control systems to illustrate the capabilities of the
framework in a simple way.

6.1 Learning Agent
An agent was implemented with an underlying SARSA reinforce-
ment learning algorithm. The state exposed to the agent was an n-
tuple of all sensor readings along with the velocity of one of the ob-
jects in the model. A scoring function was implemented to determine
rewards7.

Reinforcement learners generally learn slower as the state·action
space increases, therefore the agent enumerates the available actions
as the setting of a single motor at one of three power levels: (i) 0
(ii) Pmax and (iii) −Pmax. We experimented with an agent that in-

cluded the settings (iv)
Pmax

2
and (v) −Pmax

2
, but we found that

these settings unnecessarily crippled the agent and removed them.
The agent implements a method perform(self, dt) that cre-
ates an experience for the agent by: (a) setting the current state (b) se-
lecting and executing the reward-maximizing action (c) ticking the
simulation by dt seconds (d) rewarding the learner based on the value
of the scoring function and the new state. This method is called re-
peatedly in the evaluation, see Section 6.2.1.

6.2 Task-Environments
The agent was introduced to two similar environments. The first
environment had the goal of moving the position object into
goal position with a tolerance of 5, with 5000J and 60 seconds
as the maximum expendable time and energy (essentially, the 1D car
race example):

7 Implemented as
(
−

N∑
i=0
|sobjecti − sgoali | − εi

)
where s represents the

position (value) of either the object or the goal associated with a Goal in
the task-environment’s solution.
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• One object: position
• One fully reversible motor affecting position with 200W max-

imum input
• One sensor for position
• Goal: position within goal position ± goal epsilon
• Max time and energy: 60 s, 5000 J

The second environment expanded upon this environment, requir-
ing a “plotter” to be activated when the position is correct—both
goals needed to be satisfied to consider the task solved. An addi-
tional transition in the second environment locked the position while
the plotter was activated.

• Two objects: position and plot it
• One fully reversible motor affecting positionwith 200 W max-

imum input
• One non-reversible motor affecting plot itwith 5 W maximum

output8

• One sensor for each object
• New transition function: If plot it >0.5: position is

locked, otherwise it is unlocked.
• Goal prerequisite: position between goal position ±
goal epsilon

• Goal: plot it is 1± 0.1
• Max time and energy: 60 s, 10000 J

The second task-environment increases the task difficulty when
compared to 1D car racing by adding a new object (complete with
sensor and motor), changing the behavior (with the transition func-
tion that locks the position object) and by expanding on the orig-
inal goal.

6.2.1 Evaluation

First, the agent is tasked with solving some training environments
which are copies of the target environment, except with a more favor-
able starting position. The training environments gradually get more
difficult by increasing the distance between the starting position and
the goal. Once this training is complete, the agent gets 200 chances
to satisfy the goal(s) in each task-environment. The data is visual-
ized using the methods described in Section 5.2. Figure 1 shows the
results for the 1D car race task-environment. Figure 2 shows the re-
sults for the 1D locking plotter task-environment. Note that the agent
continues to learn by creating experiences during the evaluation (i.e.
learning is not “switched off”). The evaluation works as follows:

• While the task is not solved:

1. If the task has been failed, stop

2. Invoke the agent’s perform method (with dt set to 0.25s, see
Section 6.1).

• Finally, report time and energy usage (and indicate if the task
failed).

Note on reading the plots: The blue line represents the energy re-
quired to complete the task at each time. The red line represents the
maximum amount of expendable energy due to motor power limita-
tions. The dots represent data points for the evaluations, with lighter
colored (greener) data points representing earlier runs and darker
colored (redder) data points representing later runs.

8 You can think of a solenoid with an off button.

Figure 1. Resulting plot for 200 evaluations in the 1D car race
environment.

Figure 2. Resulting plot for 200 evaluations in the 1D locking plotter
environment.

6.3 Agent Comparison

In order to demonstrate how different agents can be compared just
as different environments can be compared, a custom agent imple-
mentation was compared with the SARSA implementation in the 1D
locking plotter environment. The custom agent roughly implements
the following algorithm in the perform method:

• Compute distance between position and the corresponding
goal

– If the distance is small enough, deactivate the position mo-
tor and activate the plot it motor.

– If the distance is positive, maximum power to the position
motor and deactivate the plot it motor.

– If the distance is negative, maximum negative power to the
position motor and deactivate the plot it motor.

• Tick the simulation by dt seconds

It should be obvious that the above algorithm is specifically tai-
lored to outperform the SARSA agent, as it includes domain knowl-
edge which the SARSA agent would need to come up with on its
own. Figure 3 indeed shows that this controller performs much bet-
ter and more constantly, but also that it’s not improving over time.
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Figure 3. Resulting plot for 200 evaluations in the 1D locking plotter
environment using an agent with a domain-specific implementation.

6.4 N-Dimensional Task Comparison
6.4.1 Task-Environments

A generic N-dimensional task-environment generator is included
in the samples as sample N task. The generator returns a task-
environment with N objects and associated sensors with a default
starting position of 3± 2 and a goal of reaching 10± 0.5. There are
two systems: (i) a control system which contains two objects with
associated motors and sensors and a transition function that sets the
power level of some hidden motor to some value depending on the
values of the objects in the control system (ii) a hidden motor system
which ensures that activating the hidden motors for each of the N
variables results in that power usage being counted

The control system includes the motors that the agent should have
direct access to. The main power motor determines how much power
is input into the hidden motors while the selection motor determines
which hidden motor is activated.

6.4.2 Controller

A simple controller was created to solve the class of task-
environments described in the previous section. The algorithm is
quite simple, the below should demonstrate the agents perform
method:

• Activate the main power motor
• Determine the object that is furthest from the goal, call it min o
• Determine the direction of power required to enable min o’s af-

fector
• Activate the selection motor in the appropriate direction
• Tick the simulation by dt seconds

6.4.3 Results

Two variations of the N-dimensional task were attempted, one with
10 dimensions and one with 20 (Figures 4 and 5). It should not come
as a surprise that the task-environment with fewer dimensions was
solved in less time, with less energy. However, the difference was
not double, as one might be inclined to suspect when doubling the
size of the environment. This gives us an indication about the agent’s
ability to scale with environments (but could also give some indica-
tion of how well-formed the environment itself is). Since we know
everything there is to know about the environment, we can assert that
the agent seems to scale well from 10 to 20 dimensions.

Figure 4. Resulting plot for 100 evaluations in a generic 10-dimensional
task-environment.

Figure 5. Resulting plot for 100 evaluations in a generic 20-dimensional
task-environment.

7 CONCLUSION & FUTURE WORK

In this paper we have presented our ideas for and early prototype
implementation of a framework for modular task-environment con-
struction (FraMoTEC). FraMoTEC aims to facilitate the evaluation
of intelligent control systems across the entire spectrum of AI sophis-
tication on practical tasks. The framework is intimately intertwined
with an equally early-stage “task theory” that is intended to deepen
our understanding of fundamental properties of various types of task-
environments and how they relate to each other. Such an understand-
ing would help us compare control systems against each other and
earlier versions in order to measure progress, learning and growth.

A major goal was to lay the groundwork for an evaluation tool
that meets the requirements that we outlined in an earlier paper [36]:
facilitation of easy construction, procedural generation and in-depth
analysis. We believe that the framework does indeed make steps in
the right direction. Current analysis capabilities of the framework
are very limited, but already provide for instance some rudimentary
understanding of tradeoffs between time and energy, and measuring
a learning system’s performance increase over time. One major piece
of future work is to further develop task theory so that we can make
predictions about the effects of combining tasks and environments:
e.g. when we add a dimension or additional goal, how does that affect
minimum time and energy requirements?

Procedural generation of task-environments is precursory at this
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point in time. The framework allows users to set ranges of accept-
able options for initial values of objects and goals instead of con-
crete values. Slightly different concrete task-environments can then
be instantiated automatically by the framework. However, the mod-
ular nature of tasks and environments should make it relatively easy
to add functionality for e.g. adding dimensions or sequencing goals.

This modularity also allows for easy construction, composition,
decomposition and scaling of task-environments. Adding or remov-
ing objects or (sub)systems, as well as combining goals and tasks in
various ways, allows us to make simple task-environments (slightly)
more complex and vice versa; thereby allowing our battery of tasks
to grow with the AI system under test. As the name suggests
FraMoTEC is primarily a framework for task-environment construc-
tion and this is where it shines, even though much work remains to
be done.

In [36] we listed a number of properties of task-environments that
a framework should 1) support and 2) ideally let the user tune:

1. Determinism Both full determinism and stochasticity must be
supported. The framework provides the option of partial stochas-
ticity out-of-the-box, such as in the creation of objects (start values
can be randomized), goals, sensor readings, and designed transi-
tions.

2. Ergodicity Ergodicity controls the degree to which the agent can
undo things and get second chances. The framework imposes no
restrictions on this other than a fundamental rule: Expended time
and energy cannot be un-expended. If the agent spends time or
energy doing the wrong thing, that time and energy will still have
been spent and the task-environment needs to be reset in order
to give the agent a second chance with regard to the energy and
time expenditure. Task-environment designers have full control
over what states are reachable.

3. Controllable Continuity This point notes that it is crucial to al-
low continuous variables, and that the degree to which continuity
is approximated should be changeable for any variable. All ob-
jects in the framework contain continuous variables, discretized
only by floating-point inaccuracies by default. It is possible use
sensors to further discretize (or distort) any accessible variables.
It is also possible to tweak the time resolution of the simulation.

4. Asynchronicity Any action in the task-environment should be
able to operate on arbitrary time scales and interact at any time.
This must currently be done manually, and we aim to provide a
more user-friendly solution in the future.

5. Dynamism The framework gives the user full control over how
static or dynamic environments are. Natural transitions of objects
can provide some limited dynamism, but controllers can be given
a static experience by clever sampling. Most dynamics will come
from designed transitions created by the framework user.

6. Observability The observability of task-environments is deter-
mined by the interface between the environment and the controller
interacting with it. Sensors are the primary control for observabil-
ity in the framework. Sensors can be tuned to tune the observabil-
ity of a task-environment by distorting the value and/or discretiz-
ing it to a user-specified resolution.

7. Controllability Controllability is the control that the agent can
exercise over the environment to achieve its goals. The controlla-
bility of the task-environment is controlled with the exposure of
motors to the controller. By modifying motor properties and in-
teractions between motors (specifically in custom transition func-
tions), the controllability of a task-environment can be tuned.

8. Multiple Parallel Causal Chains Co-dependency in objectives

can be programmed into designed task-environments without has-
sle. The framework does not place any restrictions on causal
chains with a single exception that circular-references are cur-
rently not supported (two goals may not mutually depend on each
other, one must depend on the other first).

9. Number of Agents The framework does not restrict the number
of agents nor what interactions can take place. Even if multiple
agents have access to the same motors, the framework regards the
most recent setting to be the current setting. However, interactions
are currently mostly defined by the user. We hope to provide more
user-friendly support in the future, which will go hand-in-hand
with implementing a better method for asynchronicity.

10. Periodicity The framework does not specifically handle periodic-
ity, cycles or recurrent events. The user must implement this with
designed transitions if they need this.

11. Repeatability By using the same random seed, repeatability can
be guaranteed in most circumstances. However, agents and sen-
sors must use their own random number generators (and seeds) to
avoid tampering with task-environment repeatability.

While a lot of work remains to be done, we believe that this frame-
work will be able to eventually fulfill the requirements we outlined
and significantly contribute to the field of AI evaluation, task theory,
and by proxy: AI itself.
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Evaluation of General-Purpose Artificial Intelligence:
Why, What & How

Jordi Bieger,1 Kristinn R. Thórisson1,,1,2 Bas R. Steunebrink,3
Thröstur Thorarensen1 and Jóna S. Sigurðardóttir2

Abstract. System evaluation allows an observer to obtain infor-
mation about a system’s behavior, and as such is a crucial aspect of
any system research and design process. Evaluation in the field of
artificial intelligence (AI) is mostly done by measuring a system’s
performance on a specialized task. This is appropriate for systems
targeted at narrow tasks and domains, but not for evaluating general-
purpose AI, which must be able to accomplish a wide range of tasks,
including those not foreseen by the system’s designers. Dealing with
such novel situations requires general-purpose systems to be adap-
tive, learn and change over time, which evaluation based on quite
different principles. The unique challenges this brings remain largely
unaddressed to date, as most evaluation methods either focus on the
binary assessment of whether some level of intelligence (e.g. human)
has been reached, or performance on a test battery at a particular
point in time. In this paper we describe a wide range of questions
which we would like to see new evaluation methods for. We take look
at various purposes for evaluation from the perspectives of different
stakeholders (the why), consider the properties of adaptive systems
that are to be measured (the what), and discuss some of the chal-
lenges for obtaining the desired information in practice (the how).
While these questions largely still lack good answers, we neverthe-
less attempt to illustrate some issues that we believe are necessary
(but perhaps not sufficient) to provide a strong foundation for eval-
uating general-purpose AI, and propose some ideas for directions in
which such work could develop.

1 INTRODUCTION
Evaluation is the empirical means through which an observing
system—an evaluator—obtains information about another system-
under-test, by systematically observing its behavior. Evaluating
general-purpose artificial intelligence (AI) is a challenge due to the
combinatorial state explosion inherent in any system-environment
interaction where both system and environment are complex. Fur-
thermore, systems exhibiting some form of general intelligence must
necessarily be highly adaptive and continuously learning (i.e. chang-
ing) in order to deal with new situations that may not have been
foreseen during the system’s design or implementation. Defining
performance specifications for such systems is very different than
doing so for systems whose behavior is not expected to change
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over time. Since the inception of the field of artificial intelligence
(AI) the question of how to evaluate intelligence has puzzled re-
searchers [27, 12, 10, 13, 23]. Many evaluation proposals to date
have tried to transfer ideas from human testing [27, 7, 13], but this
approach has severe limitations for artificial intelligence [2], where
no single reference- or abstract system model can be assumed.

In this paper we discuss several important topics related to cre-
ating a solid foundation for evaluating (artificial) adaptive systems,
organized around the three main topics of why we need special meth-
ods for evaluating adaptive systems, what should be measured when
evaluating such systems, and how one might go about taking these
measurements. For each one we highlight one or more topics that
we see as critical yet unaddressed in the research literature so far.
While having answers to many of the important questions raised in
this paper would be desirable, we acknowledge that solutions remain
out of reach to us, as much as our forerunners. For some we out-
line promising ways to address them, but for others we can only start
by summarizing key issues and questions that must be answered in
coming years (and decades).

Why might we want to evaluate adaptive systems? Numerous rea-
sons could be cited, many of which will be shared by evaluation of
other non-adaptive systems. Rather than try to be comprehensive in
this respect we turn our attention here to three reasons for evaluating
adaptive artificial systems that we feel are likely to lead to methods
different from those developed for other kinds of systems: (a) test-
ing whether performance levels in a particular range of areas are ex-
pected to be sufficient, (b) finding a system’s strong and weak proper-
ties, and (c) establishing trust in a system by finding ways to predict
its behavior. Different evaluators may wish to consider these aspects
for various purposes: the system’s designer may wish to find areas to
improve, a teacher may wish to gauge training progress, a user may
wish to deploy the system in situations where it will perform well,
and potential adversaries may wish to exploit possible weaknesses.
Understanding the relationship between task, environment, system,
and evaluation methods is of critical importance as this will deter-
mine the appropriateness, efficiency, and meaningfulness with which
any such measurements can be done.

What should be measured? Given that we are focusing on eval-
uation of general-purpose—and therefore adaptive—systems, it is
somewhat surprising how research on this topic has tended to ignore
its very central issue: the adaptation process itself. What adaptive
systems have beyond other systems is that they change. Any proper
test of adaptive systems must include a way to measure such adaptiv-
ity, including learning rate, knowledge retention, knowledge transfer,
and sensitivity to interference, among other things. Yet most ideas on
how to evaluate intelligent systems, starting with the Turing test and



not changed much in character over the decades, has limited its scope
to a measurement at a single point in time (see e.g. [13]).4

For the development of general—and beneficial—artificial intel-
ligence, merely measuring current performance on a range of task-
environments does not suffice. We must ascertain ourselves of the
fact that our artificial adaptive system will be able to learn to deal
with novel situations in a safe, beneficial and expedient way. Novelty
calls for a kind of generality which to date remains to be success-
fully implemented in an artificial system. An ability that humans (and
some animals) have and which seems central to general intelligence,
and in particular important for novel environments and tasks, is un-
derstanding. Even within the field of artificial general intelligence
(AGI) this special mechanism for adaptation seems to not have gotten
the attention it deserves. It seems obvious that any proper evaluation
method for intelligent systems must address understanding. In addi-
tion to performance under a variety of conditions, we must evaluate
a system’s robustness, learning/adaptation ability, and understanding
of fundamental values. Unlike more specialized systems, where reli-
ability in the specified range of situations suffices, we need to know
that a general AI would adapt its behavior but not the core of its val-
ues in new situations.

So how can such things be measured? No consensus exists on what
features adaptive systems should or must have, or what their purpose
should be (nor can there be, since applications of such systems are
countless): Looking for a single test, or even a standard battery of
tests, for evaluating such systems is futile. Instead we argue that what
is called for are a task theory [24] and a test theory [20], that would
specify how construction of a variety of evaluation tests and methods
can be done, as called for by the nature of the system to be evaluated
and the aims of their developers.

In the remainder of this paper we will first discuss some back-
ground knowledge in section 2. Section 3, section 4 and section 5
will discuss the why, what and how of AI evaluation. Here we will
consider the various purposes for which we might want to evaluate a
system, identify various important fundamental and emergent prop-
erties of adaptive systems, and look at how we could obtain informa-
tion about them. In section 6 we conclude the paper with a call for
increased focus on the discussed areas of AI evaluation that have so
far not received sufficient attention.

2 BACKGROUND

When we talk about intelligent systems under test, we can refer to
either agents or controllers.5 An agent consists of a (physical or vir-
tual) body, containing its sensors and actuators, and a controller that
acts as the “mind” of the system. In artificial intelligence research
we are usually concerned with building ever more sophisticated con-
trollers, while in robotics or applied AI we may also design the sys-
tem’s body. When we use the words “system”, “actor” or “entity”,

4 Exceptions do of course exist, but given the importance of the subject, one
would have expected the exact inverse ratio. See our earlier work on re-
quirements for an evaluation framework for AI for a more in-depth discus-
sion [23].

5 As in control theory, we use the term “controller” to refer to control mech-
anisms in the broadest sense, irrespective of the methods they employ to
achieve the control. An intelligent system’s “controller” includes anything
that changes during adaptation, such as memories, knowledge, know-how,
reasoning processes, insight, foresight, etc., as well as the primary mecha-
nisms instigating, managing and maintaining those changes. Any part of a
system designated as belonging to its controller defines thus the boundary
between that which is being controlled (e.g. a robot’s body) and that which
does the controlling (i.e. its “mind”).

we refer to whatever thing is being tested, whether that includes a
body or not.

Intelligent systems interact with task-environments, which are tu-
ples of a task and an environment. An environment contains objects
that a system-under-test can interact with—which may form larger
complex systems such as other intelligent agents—and rules that de-
scribes their behavior, interaction and affordances. A state is a con-
figuration of these objects at some point or range in time. Tasks spec-
ify criteria for judging the desirability of states and whether or not
they signify the successful or unsuccessful end of a task. The man-
ner in which the task is communicated to the system-under-test is
left open, and depends on the system and desired results of the eval-
uation. For instance, in (classical) AI planning the task is usually
communicated to the system as a goal state at the start, while most
reinforcement learners only get sporadic hints about what the task is
through valuations of the current state.

The ultimate goal of evaluation is to obtain information about an
intelligent system and its properties. This is done by observing its
performance (behavior) as it interacts with a task-environment and/or
the state that the task-environment is left in. For instance, we could
evaluate a system just by the final score of a tennis match (of which
evidence is left in the environment), or we could carefully analyze its
behavior. Another example might be a multiple-choice exam, where
we only look at the filled-out form at the end and don’t consider the
system’s behavior over time. In a more elaborate written test, we may
try to reproduce the system’s thought process from the end result.
Looking at final results is much easier, but also potentially much less
informative as it throws out a lot of information.

Black-box evaluation methods look only at the input-output be-
havior of the system under test and its consequences, while white-
box testing can also look at a system’s internals. For fair and objec-
tive comparisons between different systems (e.g. humans and ma-
chines), black-box testing is typically desirable. Nevertheless, look-
ing at gathered and utilized knowledge, or considering the perfor-
mance of different modules separately can be quite informative—
e.g.when debugging, finding weak points, or assessing understand-
ing.

To define various properties of artificial systems to be measured,
we must first have a decent understanding of the task-environments
in which they are measured—preferably in the form of a task the-
ory [24]. Task-environments—like intelligent systems—have both
fundamental and emergent properties. For instance, the number of
dimensions of a task-environment is an explicit (fundamental) part
of its definition, whereas complexity emerges implicitly, and factors
like observability and difficulty emerge in interaction with an intelli-
gent system. We define the set of all task-environments to be TE and
the set of properties to be PTE = LTE ∪NTE, where NTE is for quan-
titative properties and LTE for qualitative ones6. A quantitative prop-
erty N ∈ NTE is defined as a function from the set of all AI systems
A and a collection of task environments to a real number:N ∈ NTE :
A× TEn → R. Collections of quantitative properties similarly map
to a vector of real values: N ⊂ NTE : A × TEn → Rn. We define
a distance metric D : TE × TE → [0,∞), and DN⊂NTE(X,Y ) =
f(N (X),N (Y )), where f : Rn × Rn → [0,∞) can be any metric
on Rn; e.g. absolute/manhattan distance f(~x, ~y) =

∑|x|
i=0 |xi − yi|

6 Some examples of qualitative properties are the type of environment (e.g. is
it a grid-based environment?), the nature of another agent (e.g. is it a friend,
teacher, rival, etc.?), or the presence of particular phenomena (e.g. does
it involve arithmetic?). In this paper we focus on quantitative aspects of
evaluation however.
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or Euclidean distance
√∑|x|

i=0 (xi − yi)2. We similarly define the
properties of adaptive systems PA = LA ∪ NA.

One defining aspect of AGI-aspiring systems is that they must
adapt or learn: their knowledge and the behavior that follows from
it change over time to better handle previously unknown situations.
Here we take a very broad definition of knowledge that includes
declarative knowledge (beliefs), procedural knowledge (skills), and
structural knowledge (priorities). While the line between the core of
a system and its (more fluid) knowledge can be blurry, it is occasion-
ally useful to consider them separately. We define K(A) to be the
knowledge of adaptive system A ∈ A, and K(T E , A,K0, t0 : tn)
to be the knowledge that system A with starting knowledge K0 ac-
quires/acquired in task-environments T E ⊂ TE between times t0
and tn. An equivalent but alternative view is that K contains all of
A’s cognitive aspects that can change over time while A (also) con-
tains its constants (e.g. its identity).

3 THE WHY: PURPOSES OF EVALUATION
Evaluation at its core is about obtaining information about the intel-
ligent system-under-test. There are a number of reasons for why one
might like to evaluate such a system. Evaluation can also be done by
entities with a wide variety of relations to the system. Its developers
may wish to improve its design, users may want to know what it can
do (in which situations), teachers are interested in current knowledge
levels and supported learning methods [4], and potential rivals may
wish to size up the opposition. These parties have varying levels of
control over the system under test and the evaluation process itself,
and will need to take those limitations into account. Evaluations can
be done in the lab, where the evaluators have full control over the
task-environment and the system under test and can reset and tweak
it at will, or they can be performed in the wild: e.g. by other agents
who wish to interact with the system-under-test in some way.

3.1 Task-specific Performance
An often asked question—by consumers and creators alike—is
whether a certain device is capable of performing a particular task
that they need done, and if so, how well. Many AI systems are de-
veloped for a single, specific purpose and can often be evaluated in a
relatively straightforward fashion. Performance is defined by the task
at hand, and task-specific knowledge can be used to devise a model
of the task-environment and/or select a collection of representative
situations in which the system is to be tested.

Such evaluations are suitable in cases where the variation in the
task-environment is well-known or can be controlled to a sufficient
degree, and no real adaptation is required. This is typically not the
situation in AGI research, where intelligent systems must be able to
handle a wide range of tasks, both known and unknown at system
design (and test) time. Nevertheless, even an AGI system may on oc-
casion want to learn a particular task (in addition to the other tasks
it already knows), in which case evaluation of task-specific perfor-
mance could be appropriate for e.g. measuring training progress.

3.2 Strengths and Weaknesses
General cognitive abilities—and most generally intelligence—are
used across a wide variety of tasks. Examples include the abil-
ity to reason by analogy, learn from examples, perform induc-
tion/abduction/deduction, respond in real-time, remember recent or
long-ago events, understand causal chains, ignore distractions, etc.

Knowledge of the levels of various cognitive abilities provides infor-
mation about the system’s strengths and weaknesses. This is useful
for a variety of reasons:

• It points the system’s developers to areas that need improvement.
• It can help users determine whether the system is suitable for (a

range of) tasks or environments.
• It can help a teacher or friend find methods for educa-

tion/interaction that the system will respond well to.
• It can help a potential adversary select strategies that avoid

strengths and exploit weaknesses.

Depending on the evaluator’s role, there are various amounts of
control that they can exert over the system and the evaluation process.

In AI research we are mainly interested in cognitive capabilities,
but generally speaking evaluation can also be used to test more phys-
ical capabilities.

3.3 Trust and Predictability

AGI systems are built to be deployed in situations that are not yet
fully known when the system is designed and tested. Nevertheless,
we would like to ensure that it behaves acceptably. To know this,
we need to evaluate the range of situations in which it will behave
according to specification. We can try to limit the system’s exposure
to situations that fit these parameters. When this is not possible or
desirable, we want to know that the system degrades gracefully in
difficult and/or novel situations and ideally that it will adapt to them
and learn to perform well again over time. We also want to ensure that
the system understands what “perform well” and “good outcome”
mean, even in completely new situations.

For the development of general, beneficial artificial intelligence
merely measuring performance on a range of task-environments does
not suffice [20]. We must ascertain ourselves of the fact that it will be
able to learn to deal with novel situations in a safe and beneficial way.
To do so, we must evaluate robustness, learning/adaptation ability
and understanding of fundamental values, as well as performance
under various conditions. Unlike more specialized systems, where
reliability in the specified range of situations suffices, we need to
know that a general AI would adapt its behavior but not the core
of its values in new situations [5]. To ensure good outcomes in an
unpredictable, large, and complex (real) world, we need to look at a
system’s robustness, adaptivity and understanding.

4 THE WHAT: PROPERTIES OF INTELLIGENT
SYSTEMS

After having identified different purposes of evaluation we can now
turn to the various properties of artificial systems about which we
may desire information. Some properties—such as the nature of the
system’s learning algorithms or its motivational system—are inher-
ent in the system’s design and may be amenable to inspection of
its implementation, while other properties—such as the performance
on a certain task or the amount of knowledge necessary to learn
something—are emergent from the interaction with the world and are
more amenable to evaluation. Although tests for qualitative aspects
of a completely black-box system could in principle be designed, we
focus here on the evaluation of quantitatively measurable properties.
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4.1 Performance

For virtually all quantitative evaluations, some kind of performance
measure is used as the main dependent variable. Too often however,
all focus is placed on precision, accuracy or correctness, while mea-
sures of efficiency are relegated to secondary importance or ignored
altogether. This can include the speed with which a task is performed
(i.e. time efficiency), but also the reliance on other resources such
as energy and knowledge (amount, diversity and content). The (in-
dependent) variable is often (training) time, if it is measured at all.
These are important factors, and there are many others that can—and
probably should—be considered as well.

We define performance level P ∈ NA : A → [−1, 1] to be the
main dependent variable for our evaluation purposes, whereP can be
some combination of accuracy/correctness A, speed/time-efficiency
T , energy-efficiency E , etc. The performance level of system A
with knowledge K on task X can be written as P(X,A,K).7 Ef-
ficiency/resource properties can also be defined with respect to a cer-
tain level of performance. For instance, T P=0.9 could be the amount
of training time required to reach a score of 0.9 on performance mea-
sure P .

4.2 Adaptivity

To measure the adaptivity of a system, it is not only important to
look at the rate at which a new task is learned, but also how much
new knowledge is required.8 The capacity for lifelong [26, 19] and
transfer learning [22, 16, 11] depends not just on time, but on the
content of old and new knowledge, as existing knowledge determines
in part the speed of acquisition of new knowledge—both with respect
to prerequisite knowledge already acquired (e.g. recognizing letters
helps with learning to read) and to how related knowledge may apply
to a new task, also called transfer learning (e.g. knowledge of driving
one kind of motorized vehicle can help speed up learning how to
drive others).

The most important measures of learning are probably the
ones that relate the needed time, knowledge and other resources
to a desired level of performance. Performance can for instance
be measured as a function of training time, by varying tn in
P(X,A,K(X,A,K0, t0 : tn)), which is the performance on task
X after the system has trained on it between times t0 and tn (K
is the knowledge system A with starting knowledge K0 obtained in
task-environment X between times t0 and tn). This can show how
efficiently a certain task is learned. A more general measure of learn-
ing efficiency within a class of task-environments can be obtained by
taking a weighted average of the performance on those other task-
environments. However, this will only work if 1) the performance
measures for various tasks are normalized (e.g. between -1 and 1),
and 2) if corrections are made for the complexity and size of in-
dividual tasks. The goal here would be that if we encounter a new
task with broadly the same properties as the measured class of task-
environments, we can use the learner’s general learn rate property to
predict with some accuracy what would be needed to learn the new
task (depending on known details such as its size and complexity).

7 As before, we can think of K as the cognitive aspects of the actor A which
can change over time, while A (also) contains constant aspects such as the
system’s identity.

8 Knowledge acquisition takes time, so there is a correlation, but it is not per-
fect. Many algorithms spend much time processing the same data over and
over, and the intelligence with which a space is explored can greatly influ-
ence how much new knowledge is gathered in a given time span (cf. active
learning [18]).

Transfer learning ability T L : A × TE × TE → R of a system
from one task (collection)X to another Y can be defined in a number
of complementary ways. For instance, we can look at how training
for some time on X affects performance on Y in several ways. In
each case we compare performance from training just on the target
task(s) Y to performance of training on X first and then on Y .

• Raw performance transfer is the performance on Y after having
trained on X for a given amount of time (dependent variable)
or until a given level of performance: P(Y,A,K(X,A,K0, t0 :
tn)). This can also be considered as generalization to a different
set of tasks. A special case would be if Y ⊂ X , in which case the
test corresponds to a spot check of a larger amount of knowledge.

• The performance “loss” of training on the wrong task-
environments can be calculated as the difference between
P(X,A,K(X,A,K0, t0 : tn)) and P(Y,A,K(X,A,K0, t0 :
tn)).

• A performance “gain” can be calculated by comparing how much
“extra” training in another task-environment helps (or hinders):
P(Y,A,K(Y,A,K(X,A,K0, tk : t0), t0 : tn)). Note that in
this case more total time is used for training.

• Alternatively, we could look at whether it might help to spend
part of a fixed time budget on task X before moving on to Y :
P(Y,A,K(Y,A,K(X,A,K0, t0 : tm), tm : tn)).

Probably the most straightforward way to apply these measures is
to take performance transfer as a function of training time tn (and
tk/tm). However, we can also take an extra step and analyze perfor-
mance transfer as a function of attained performance level on X or
the amount of knowledge that was acquired. Additionally, we can
look at other things than performance, such as:

• Raw knowledge transfer is defined as the minimum amount of
knowledge for reaching performance level y on Y that needs to
be added to the system’s knowledge after having trained on X:
|KP=y(Y,A,K(X,A,K0, t0 : tn))|.

• Training time transfer is defined as the difference between the
amount of time to reach performance level y on Y from the current
situation, and the amount of time needed to reach that level after
having trained in X first: T P=y(Y,A,K(X,A,K0, t0 : tn)).

• Composite time transfer is training time transfer plus the amount
of time spent to train onX: T P=y(Y,A,K(X,A,K0, t0 : tn))+
tn − t0.

Composite transfer measures can be used in teaching scenarios to
judge whether it is worthwhile to decompose a task into component
parts that are learned separately before a full task is presented [4].

In each case the transfer can be positive or negative. It is possible
that knowledge is acquired in X that contradicts knowledge neces-
sary to succeed in Y , possibly through no real fault of the system
(e.g. it could have a bad teacher). Nevertheless, in many cases an
intelligent adaptive system should be able to make use of its previ-
ously acquired knowledge when learning something new. It is there-
fore important that these systems retain some plasticity, even when
they acquire more and more knowledge.

While it is most intuitive to consider transfer from previous tasks
to newly learned ones, there can also be transfer (or interference) the
other way around. Ideally, learning new tasks (e.g. a new language)
should make one better at older tasks as well (e.g. other languages),
but often the reverse is true. Catastrophic interference or forgetting
plagues many machine learning systems: the ability to perform old
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tasks is lost when new tasks are learned [9, 3]. Interference and for-
getting can be measured in similar methods as above.

So far we have assumed that one task (collection) is learned af-
ter another, but often tasks are learned and performed in parallel
(cf. multitask learning [8, 17]). Again, similar measures can be de-
fined for this scenario. In this case we also delve into the realm of
distractions and robustness.

4.3 Robustness

Robustness is another important aspect of AI systems. The two main
things to consider are when (or if ) the system “breaks down” and
how it does so. Furthermore, even in adverse or novel conditions we
would like the system to eventually adapt so that it can properly func-
tion even in the new situation. Ideally we want a system that never
breaks down, but this is likely not a realistic goal if we can not antic-
ipate all the situations the system will find itself in. A more realistic
goal may be to require that the system degrades gracefully, notices
when things go awry and takes appropriate action—such as asking
for help, moving back to a safer situation or gathering more informa-
tion to start the adaptation process.

A general AI system may encounter various kinds of (internal
and external) noise, distractions from extraneous input/output (di-
mensions) or parallel tasks, situations that differ on various dimen-
sions from what it is used to, strain on its subsystems, or outright
breakage of components. It is important to know that as these factors
move further away from the ideal situation, the system will continue
to function appropriately, detect the problem and/or degrade grace-
fully. Robustness can be measured with performance as the depen-
dent variable and one or more kinds of interference as the indepen-
dent variables. However, it can also be combined with other depen-
dent variables such as training time or the ability to transfer knowl-
edge between tasks. The standard form of measuring robustness is
similar to knowledge transfer:P(Y,A,K(X,A,K0, t0 : tn)). How-
ever, in this case we are more interested in the relation between task-
environments X and Y than the training time and efficiency, and
the difference between training on X first vs. training on Y directly.
A good task-theory can help tremendously in the measurement of ro-
bustness. Most notably, we would want a task-environment generator
or modifier that can create variants of the training environments X
that differ in various desired ways.

One of the simplest notions of robustness is sensitivity to noise.
Even a relatively primitive task-theory should make it possible to
add noise, distortions or latency to the system’s sensors and/or actu-
ators. We could then draw a graph of how performance deteriorates
as noise increases, which provides a nice quantitative picture of ro-
bustness in the face of a particular kind of interference. Other rela-
tively easy-to-generate variations are to add irrelevant distractions to
the environment (e.g. extra sensors, actuators or objects) or parallel
tasks, to create a scarcity of resources (e.g. time, energy, knowledge).

If we look at P(Y,A,K(X,A,K0, t0 : tn)) as a function of
the distance between Y and X (measured along desired dimensions
through some yet-to-be-invented task theory), we get a measure of
generalization. Generalization ability of an adaptive system is among
its most important properties, but we can additionally use these meth-
ods to judge the representativeness of certain training environments
(X), which could then be used to more efficiently teach the system
to perform well in a wide range of situations.

Aside from external sources of interference, we can also look at
internal sources: what happens if faults occur inside of the system
itself? If a (physical or “cognitive”) component breaks down, will

the system “die” or go “crazy”, or will it just deteriorate perfor-
mance slightly and perhaps even prompt the system to adjust and
fix the problem? Some types of adversity that need not be catas-
trophic include memory deterioration or corruption, system/CPU
strain/overload, synchronization errors, dropped messages, latency,
noise, and failure of individual components (in a modular or dis-
tributed system).

In addition to looking at quantitative measures of dips in perfor-
mance, it is also important to consider qualitative factors: if perfor-
mance suddenly drops to zero we must ask what it means. Did the
system just go crazy, or did it sensibly decide that the situation has
deteriorated to the point where shutting down, warning a human or
pursuing more fruitful endeavors is more appropriate? Answering
such questions may require analyzing the system’s behavior, moti-
vations and/or reasoning in more detail.

4.4 Understanding
We typically want to see a certain continuity in our systems’ be-
havior, even as they encounter new situations. For learning systems
however, we also want them to adapt so that they may improve their
performance even in these unforeseen situations. There is a delicate
balance between change to a system’s parameters that is desirable,
and change that isn’t. Importantly, we want performance to improve
(or not degrade) from our perspective. Subjective improvement from
the system’s perspective might be achieved by changing the way suc-
cess is measured internally, but this is typically not something that we
want. Most contemporary AI systems lack this capability, but more
powerful and general systems of the future may possess the ability
to recursively self-improve. While there are reasons to believe that a
sufficiently intelligent system would attempt to protect the integrity
of its goals [15, 6], we still need to ensure that these attempts are
indeed successfully made.

Predictability results not just from vigorous quantitative tests, but
also from more qualitative tests of a system’s understanding. Some
recent examples show that high performance on a task does not
guarantee that the system performing it understands that task [21].
Deep neural networks have been trained to recognize images rather
adequately—in some cases rivaling human-level performance—but
are easily fooled with complete nonsense images or some slight de-
viations from the training data. When the stakes are higher, it is im-
portant to know that such weaknesses don’t exist when situations
differ slightly from the training scenario. By testing a system’s un-
derstanding and examining its argumentation (cf. argument-based
ML [14]), we can assure ourselves of the kind of reasoning that will
be used even when novel situations are encountered. Perhaps even
more importantly a system’s ability to grow its understanding should
be assessed to strengthen the foundation on which a system’s level of
adaptivity and intelligence is estimated, and the level of trust that we
place in it.

Assessing a system’s understanding of one or more phenomena9

seems critical for generalizing a system’s performance with respect
to unfamiliar and novel tasks and environments. In prior work we
have proposed a definition of understanding, based on the idea of
models M of phenomena [25]. The closer the models describe im-
portant aspects of a phenomenon’s properties and relations to other

9 We define a phenomenon Φ (a process, state of affairs, thing, or occur-
rence) as Φ ⊂ W where W is the world in which the phenomenon ex-
ists and Φ is made up of a set of elements (discernible “sub-parts” of Φ
{ϕ1 . . . ϕn ∈ Φ}) of various kinds including relations <Φ (causal, mere-
ological, etc.) that couple elements of Φ with each other, and with those of
other phenomena. See Thórisson et al. [25] for further details.
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things the more general their utility, and the more deeply the sys-
tem can be said to understand the phenomenon. Among other things,
good models allow for making good predictions. Importantly, the
theory goes further than this, however, requiring in addition that for
proper assessment of a system’s understanding its ability to explain,
achieve goals with respect to, and (re-)create10 a phenomenon must
also be assessed.

In short, the theory states that, given any phenomenon Φ, model
MΦ contains information structures that together can be used to ex-
plain Φ, predict Φ, produce effective plans for achieving goals with
respect to Φ, and (re)create Φ. For any set of models M , the closer
the information structures mi ∈ M represent elements (sub-parts)
ϕ ∈ Φ, at any level of detail, including their internal and external
relations/couplings <Φ, the greater the accuracy of M with respect
to Φ. An adaptive system A’s understanding of phenomenon Φ de-
pends on the quality, that is accuracy and completeness of A’s mod-
els M of Φ, which enable prediction, action upon, explanation, and
(re)creation of Φ. The better such models describe Φ, the better any
of these will be. Understanding thus has a (multidimensional) gradi-
ent from low to high levels [25].

Prediction is one form of evidence for understanding. Some pre-
diction can be done based on correlations, as prediction does not
require representation of the direction of causation yet captures co-
occurrence of events. Prediction of a particular turn of events requires
(a) setting up initial variables correctly, and (b) simulating the impli-
cations of (computing deductions from) this initial setup.

A number of different questions can be asked regarding the pre-
diction of a phenomenon, for instance:

• From a particular (partial) start state, what is the time (range) in
which the phenomenon is expected to occur (if at all)?

• What will be the state of the phenomenon at a future time, given
some starting conditions?

• For some phenomenon Φ = {φ1 . . . φn}, given values for some
subset Ψ ⊂ Φ, predict the values for the remaining φi ∈ Φ.

• Predict the state or occurrence of related phenomena Ω ⊂ <Φ

given the state of Φ.

Picking an appropriate set of such questions is at the heart of prop-
erly evaluating a system’s ability to predict a phenomenon.

Goal Achievement. Correlation is not sufficient, however, to in-
form how one achieves goals with respect to some phenomenon Φ.
For this one needs causal relations. Achieving goals means that some
variables in Φ can be manipulated directly or indirectly (via interme-
diate variables). Achieving goals with respect to a phenomenon Φ
does not just require understanding the individual components of Φ
itself, but also how these relate to variables that are under the sys-
tem’s control. In short: the system needs models for interaction with
the environment as well as the phenomenon. For a robotic agent driv-
ing a regular automobile, to take one example, the system must pos-
sess models of its own sensors and manipulators and how these re-
late to the automobile’s controls (steering wheel, brakes, accelerator,
etc.). Such interfaces tend to be rather task-specific, however, and are
thus undesirable as a required part of an evaluation scheme for un-
derstanding. Instead, we call for an ability to produce effective plans
for achieving goals with respect to Φ. An effective plan is one that
can be proven useful, efficient, effective, and correct, through imple-
mentation.11

10 We mean this in the same sense as when we say that a chef’s recipe demon-
strates her understanding of baking, or a physicists’ simulation of the uni-
verse demonstrates their understanding of how the universe works.

11 Producing plans, while not being as specific as requiring intimate familiar-

Goal achievement with respect to some phenomenon Φ can be de-
fined by looking at the system’s performance (cf. section 4.1) in task-
environments and/or interactions that feature Φ. The phenomenon
can play a number of different roles, depending on its type (e.g. event,
process, tool, obstacle, etc.). Events can be caused, prevented or
changed (usually within a certain time range). Objects can have their
state configured in a desired manner. When an object is a tool or ob-
stacle, we can compare the performance in environments with and
without Φ. Processes can have several effects on the environment
(possibly depending on the manner of their execution), and we can
set a task-environment’s goal to be accomplished by some of these
effects and negated by others to see if the system can flexibly exe-
cute the process. If the system’s performance in task-environments
and/or interactions that include Φ are consistently better than when
Φ is absent, this can indicate a higher level of understanding of Φ.

Explanation is an even stronger requirement for demonstrating un-
derstanding, testing a system’s ability to use its models for abduc-
tive reasoning. Correlation does not suffice for producing a (true)
explanation for an event or a phenomenon’s behavior, as correlation
does not imply causation. One may even have a predictive model of
a phenomenon that nevertheless represent incorrectly its parts and
their relations (to each other and parts of other phenomena). This
is why scientific models and theories must be both predictive and
explanatory—together constituting a litmus test for complete and ac-
curate capturing of causal relations.

(Re)creating a phenomenon is perhaps the strongest kind of evi-
dence for understanding. It is also a prerequisite for correctly build-
ing new knowledge that relies on it, which in turn is the key to grow-
ing one’s understanding of the world. By “creating” we mean, as
in the case of noted physicist Richard Feynman, the ability to pro-
duce a model of the phenomenon in sufficient detail to replicate
its necessary and sufficient features. Note that this is not limited to
(re)creation by the system using its own I/O capabilities, but involves
an understanding of how the phenomenon can be created in general
by the system, by others, by the environment itself, or even by some
hypothetical entity with (partially) imagined capabilities. Requiring
understanders to produce such models exposes the completeness of
their understanding.

It is important to emphasize here that understanding, in this for-
mulation, is not reductionist: Neither does it equate the ability to
understand with the ability to behave in certain ways toward a phe-
nomenon (e.g. achieve goals), nor the ability to predict it, nor the
ability to explain it, nor the ability to (re)create it. While any of these
may provides hints of a system’s understanding of a phenomenon,
it cannot guarantee it. In our theory all are really required (to some
minimum extent) to (properly) assess a system’s understanding; any
assessment method that does not include these four in some form
runs a significantly higher risk of failure.

5 THE HOW: CONDUCTING TESTS AND
ANALYZING RESPONSES

All evaluations are contextual: i.e. they are done with respect to
a task-environment, or collection of task-environments. We should
examine how the measurements depend on the chosen collection
of task-environments, and strive towards using as large a range as
possible. We will need to say something about the range of task-
environments that we think our results generalize to as well. Se-

ity with some I/O devices to every Φ, requires nevertheless knowledge of
some language for producing said plans, but it is somewhat more general
and thus probably a better choice.
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lection and/or creation of task-environments for the optimal mea-
surement of desired system properties that generalize to other task-
environments requires a task theory [24].

5.1 Construction and Selection of
Task-Environments

We need a way to relate the things we want to test for to the in-
formation that can be obtained from (aspects of) task-environments.
Due to the differences in AI systems, the purposes for which they
are built and the properties we want to test for, it is impossible to
construct a single test, or test battery, that measures everything for
all systems. Rather, we need a task theory that allows us to analyze
and construct tasks to specification, in combination with knowledge
about the properties and behavior of intelligent, adaptive systems.

Given an intelligent system and a question about one or more of
its properties, we should be able to a) construct a task-environment,
b) adapt a given task-environment, or c) select a task-environment
from some choices, in order to optimally answer that question about
the system. Given a task-environment we would like to be able to
predict reasonable behaviors for a certain system or class of systems
with certain properties. An informative task-environment would af-
ford multiple behaviors that are distinctive with respect to the prop-
erty that we want to measure. It is likely most informative to test
around the edges/limits of the system’s capabilities. A task theory
that allows for scaling the scope or difficulty of environments would
therefore be tremendously useful [23].

In some cases it may be possible to construct batteries of tasks
for answering a certain question about a set of systems—e.g. a stan-
dardized exam. In other cases the evaluation may be more interactive
and explorative. Another important consideration is how much con-
trol we have over the system (e.g. can we look at its source code or
memory?) and its task-environment (e.g. is it virtual and owned by
us?).

Motivation and Incentive Somehow we need to get the system to
actually perform the envisioned task, which may be difficult without
full control. Simply placing a system in a task-environment doesn’t
guarantee that it will perform (or even understand) the task that we
want. If you place a child in a room with a multiple-choice IQ test,
will it fill it out as you want? Or will it check the boxes in an aes-
thetically pleasing manner? Or just ignore the test? In general we
can never be sure, but we can try to incentivize good performance on
the test. Alternatively, we can look at the behavior and try to derive
the task the system was trying to perform (cf. inverse reinforcement
learning [1]; although this tends to assume a certain level of compe-
tency on the part of the system).

5.2 Judging Behavior

Rather than just looking at end results (e.g. score on an exam or
tennis match), we can also look at performance/behavior during the
test (i.e. the sequence of actions in response to stimuli). This should
hopefully shed some light on inner workings and allow us to con-
struct a model that is predictive in more situations.

In situations where we know a good solution to a task, we can
compare that solution (or those solutions) to the observed behavior
of the system. Assuming the system has the appropriate goals, we
can then see where it deviates and consider what gap in knowledge

or leap in reasoning led it to do so. Alternatively, under the assump-
tion that the system is reasonably competent, we can try to find its
motivations and goals through inverse reinforcement learning [1].

Deconstruction/decomposition of tasks into multiple smaller parts
can be extremely useful for this purpose. In that case, we can use
easier-to-perform performance evaluations on a much more granular
scale.

5.3 Evaluating Understanding

To test for evidence of understanding a phenomenon Φ (a process,
state of affairs, thing, or occurrence) in a particular task environment,
we may probe (at least) four capabilities of the system (a) to predict
Φ, (b) to achieve goals with respect to Φ, (c) to explain Φ, and (d) to
(re)create Φ [25]. All can have a value in [0, 1] where 0 is no under-
standing and 1 is perfect understanding.12 For a thorough evaluation
of understanding all four should be applied.

The major challenge that remains is how to perform this assess-
ment. Goal achievement can be measured in a reasonably straight-
forward fashion, although we do require a way to construct goals
and tasks that incorporate the phenomenon for which understanding
is to be tested. Similarly, it should be possible to define a task that
involves the desired phenomena’s recreation. Testing for high-level
predictions seems more challenging if the system doesn’t automat-
ically communicate the predictions that it makes. Somewhat imper-
fect tests for predictions can be constructed by presenting the system
with situations where correct predictions would likely prompt it to
show different behavior than incorrect predictions. Alternatively, it
may be possible to access the system’s internals, in which case a
trace of its operation may show which events and observations were
expected.

Measuring explanations may be the most important and difficult
challenge in AI evaluation though. Most systems are not explicitly
built to provide human-understandable explanations for their actions,
but from this we cannot conclude that they are not adequately model-
ing the causal chains of the environment and justifying their behavior
to themselves in some way. If a system doesn’t explicitly try to ex-
plain itself, then it seems that we can only access explanations by in-
specting the system’s inner workings. Subsymbolic systems are noto-
riously difficult to understand for humans, but even symbolic systems
could present difficulties; either because their symbols are unlabeled
and grounded in a different ways than ours, or because the amount of
involved models and considerations in each decision are overwhelm-
ing. Overcoming these issues is an open problem, but given the im-
portance of modeling the world’s causal chains and making justifi-
able decisions, we suggest that AGI systems ought to be built with
a faculty for explanation and summarization in mind, which should
help us evaluate their understanding.

6 CONCLUSION & FUTURE WORK

Evaluation of intelligent adaptive systems is important for a wide va-
riety of reasons. Progress in AI depends on our ability to evaluate it:
to find the strengths and weaknesses of our programs and improve
them where necessary. Looking at performance alone is not enough,
since we need our more general systems to operate beneficially even

12 More complex measurements could of course be used for a more thorough
or faithful representation of understanding; projecting it down to a single
dimension may lose some (important) information. This simplification is
however immaterial to the present purposes.
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in situations that we did not fully foresee. We must therefore con-
sider these systems’ robustness to changing and possibly deteriorat-
ing conditions and acquire confidence that they will adapt in ways
that allow them to continue to be beneficial to their human owners.

Focus in AI evaluation has been mostly on testing for
performance—often in specialized (and limited) domains—by mea-
suring some final result that was attained on a task at a single point
in time. Not only do we need to consider other factors like adaptiv-
ity and robustness: we must also look beyond the final impact that
is made on the system’s environment. Moment-to-moment behavior
can be a rich source of information that sheds much light on how
or why a certain level of performance was attained. Even more im-
portantly, we must attempt to measure levels of understanding. An
explanation is more than a single data point: it is a model that can be
applied in many situations. If we know that a system understands cer-
tain concepts—most notably our values—we can be relatively con-
fident that it will make the right considerations, even in unforeseen
situations.

Measuring system properties beyond performance as well as the
analysis of behavior and understanding are very challenging, and it
is not obvious how to do it. It is however clear that better theories
for testing, understanding and task-environments are a part of the
solution. Future work must investigate these avenues of research that
are necessary if we are to move forward in our quest for general-
purpose adaptive AI.
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DisCSP-Netlogo- an open-source framework in NetLogo
for implementation and evaluation of the distributed

constraints
Ionel Muscalagiu1, Popa Horia Emil2and Jose Vidal 3

Abstract. Distributed Constraint programming (DisCSP/DCOP) is
a programming approach used to describe and solve large classes of
problems such as searching, combinatorial and planning problems. A
simulation framework in NetLogo for distributed constraints search
and optimization algorithms is presented. The purpose of this paper is
to present an open-source solution for the implementation and eval-
uation of the distributed constraints in NetLogo. This tool can run
with or without a graphical user interface in a cluster of computers
with a large number of agents. It includes all needed techniques for
implementing all existing DCSP and DCOP algorithms. A compar-
ison with the main evaluation and testing platforms for distributed
constraints search and optimization algorithms is presented.

1 Introduction

Constraint programming is a programming approach used to describe
and solve large classes of problems such as searching, combinatorial
and planning problems. A Distributed Constraint Satisfaction Prob-
lem (DisCSP) is a constraint satisfaction problem in which variables
and constraints are distributed among multiple agents [16], [7]. A
Distributed Constraint Optimization Problem (DCOP) is similar to
the constraint satisfaction problem except that the constraints return
a real number instead of a Boolean value and the goal is to minimize
the value of these constraint violations.

Distributed Constraint Satisfaction/Distributed Constraint Opti-
mization is a framework for describing a problem in terms of con-
straints that are known and enforced by distinct participants (agents).
This type of distributed modeling appeared naturally for many prob-
lems for which the information was distributed to many agents.
DisCSPs are composed of agents, each owning its local constraint
network. Variables in different agents are connected by constraints
forming a network of constraints. Agents must assign values to their
variables so that all constraints between agents are satisfied. Instead,
for DCOP a group of agents must distributedly choose values for a set
of variables so that the cost of a set of constraints over the variables is
either minimized or maximized. Distributed networks of constraints
have proven their success in modeling real problems.

There are some algorithms for performing distributed search in
cooperative multiagent systems where each agent has some local in-
formation and where the goal is to get all the agents to set them-
selves to a state such that the set of states in the system is optimal.

1 Politehnica University of Timisoara, Romania, email: mionel@.fih.upt.ro.
2 The University of the West, Timisoara, Romania, email:hpopa@info.uvt.ro
3 Computer Science and Engineering, University of South Carolina, USA,
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There exist complete asynchronous searching techniques for solv-
ing the DisCSP in this constraints network, such as the ABT (Asyn-
chronous Backtracking), AWCS (Asynchronous Weak Commitment)
[16], ABTDO (Dynamic Ordering for Asynchronous Backtracking)
[7], AAS (Asynchronous Search with Aggregations) [14], DisDB
(Distributed Dynamic Backtracking) [2] and DBS (Distributed Back-
tracking with Sessions) [9].

Also, for DCOP there are many algorithms among whom we name
ADOPT (Asynchronous Distributed OPTimization) [8] or DPOP
(Dynamic Programming Optimization Protocol) [12]. We find that
many multiagent problems can be reduced to a distributed constraints
problem. Many problems in the areas of computer science, engineer-
ing, biology can be modeled as constraint satisfaction problems (or
distributed CSP). Some examples include: spatial and temporal plan-
ning, diagnosis, decision support, hardware design and verification,
real-time systems and robot planning, protein structure prediction
problem, DNA structure analysis, timetabling for hospitals, industry
scheduling, transport problems, etc.

The implementation and testing of the asynchronous search tech-
niques implies a programming effort not at all trivial. Thus, the ne-
cessity of developing a dedicated platform that can be used for test-
ing them became a necessity. There are some platforms for imple-
menting and solving DisCSP problems: DisChoco [19], DCOPolis
[13], DisCo [4], FRODO [5] and DisCSP-Netlogo [10, 21]. Such
a tool allows the use of various search techniques so that we can
decide which is the most suitable one for that particular problem.
Also, these tools can be used for the study of agents’ behavior in sev-
eral situations, like the priority order of the agents, the synchronous
and asynchronous case, apparition of delays in message transmis-
sion, therefore leading to identifying possible enhancements of the
performances of asynchronous search techniques.

The asynchronous search techniques involves concurrent (dis-
tributed) programming. The agents can be processes residing on a
single computer or on several computers, distributed within a net-
work. The implementation of asynchronous search techniques can
be done in any programming language allowing a distributed pro-
gramming, such as Java, C/MPI or other. Nevertheless, for the study
of such techniques, for their analysis and evaluation, it is easier and
more efficient to implement the techniques under a certain distributed
environment, such as the new generation of multiagent modeling lan-
guage (NetLogo [17], [21], [22], [6]).

NetLogo is regarded as one of the most complete and successful
agent simulation platforms [17], [6]. NetLogo is a high-level plat-
form, providing a simple yet powerful programming language, built-
in graphical interfaces and the necessary experiment visualization



tools for quick development of simulation user interface. It is a en-
vironment written entirely in Java, therefore it can be installed and
activated on most of the important platforms.

The purpose of this paper is to present an open-source solution
for implementation and evaluation of the asynchronous search tech-
niques in NetLogo, for a great number of agents, model that can be
run on a cluster of computers. However, this model can be used in
the study of agents’ behavior in several situations, like the priority
order of the agents, the synchronous and asynchronous case, etc. Our
goal is to supply the programmer with sources that can be updated
and developed so that each can take profit from the experience of
those before them. In fact, it is the idea of development adopted in
the Linux operating system. Any researcher has access to the existing
implementations and can start from these for developing new ones.
The platform offers modules for various problems of evaluation such
as: the random binary problems, random graph coloring, multi-robot
exploration.

This paper synthesizes all the tries of modeling and implementa-
tion in NetLogo for the asynchronous search techniques [10],[11].
Many implementations were done for a class of algorithms from the
ABT and AWCS families (DisCSP), respectively ADOPT (DCOP).
They can be downloaded from the websites [21], [22].

The DisCSP-NetLogo modules were designed for the implemen-
tation, learning and evaluation of distributed algorithms [10, 11].
These modules offer support for researchers from the DisCSP/DCOP
domain for developing their algorithms, for evaluating the perfor-
mances of these algorithms, and why not, for tutorials that allow
teaching these techniques that have a pretty high degree of difficulty.
Also, these modules allow the study of the agents’ behavior, visual-
ization of various values attached to the agents and, as a consequence,
allowing us to understand these complex systems.

The DisCSP Netlogo allows various extensions: the modules can
be updated and extended. The test problem generators can be particu-
larized and new problem types can be added. Extreme situations can
be simulated, such as network delays, allowing users to test the same
algorithms under different network conditions. The DisCSP Netlogo
allows the running with GUI also the visualization in real time of the
metrics associated with the algorithm. The visualization of partial
solutions is also possible with this tool. By visualization of various
aspects of distributed search algorithms, one can attain new insights
on the behavior of these algorithms. These insights may help drive
new variants of search algorithms and different heuristics for these
algorithms. The visualization also enables algorithm debugging dur-
ing the implementation process of new algorithms, and can serve
as an educational method which dynamically displays an algorithms
progress.

We adapted the HubNet technology to allow the agents to run on
computers or mobile devices from the local network or over the In-
ternet. A template model is provided, this template can be down-
loaded from the websites [21]. This thing will allow us to run the
agents in conditions as close as possible to the real ones, opposite to
the majority of dedicated platforms that allow an evaluation in the
simulated mode. Typically, the DisCSP/DCOP algorithms have been
evaluated along two dimensions: computation and communication.
The solution proposed here will allow to recreate more realistic sce-
narios and to better understand algorithms behavior in conditions of
existing network latency. This tool is aimed to allow the evaluation
of distributed algorithms in conditions as similar as possible to the
real situations.

Some problems modeled with distributed constraints are exempli-
fied:

• the randomly generated problem that has a structure of scale-free
network (the constraint graph has a structure of scale-free net-
work) .

• the multi-robot exploration problem.
• the randomly generated (binary) CSPs.
• the protein folding problem.

2 Modeling and implementing of the asynchronous
search techniques in NetLogo

In this section we present a solution of modeling and implementa-
tion for the existing agents’ process of execution in the case of the
asynchronous search techniques. This open-source solution, called
DisCSP-NetLogo is extended so that it is able to run on a larger
number of agents, model runnable on a cluster of computers and is
presented below. This modeling can also be used for any of the asyn-
chronous search techniques, such as those from the AWCS family
[16], ABT family [2], DisDB [2], DBS [9]. Implementation exam-
ples for these techniques can be found on the sites in [21],[22].

The modeling of the agents’ execution process is structured on
two levels, corresponding to the two stages of implementation [10],
[20]. The definition of the way in which asynchronous techniques are
programmed so that the agents run concurrently and asynchronously
constitutes the internal level of the model. The second level refers to
the way of representing the surface of the implemented applications.
This is the exterior level.

In any NetLogo agent simulation, four entities (ob-
jects)participate:

• The Observer, that is responsible for simulation initialisation and
control. This is a central agent.

• Patches, i.e. components of a user defined static grid (world) that
is a 2D or 3D world, which is inhabited by turtles. Patches are
useful in describing environment behavior.

• Turtles that are agents that “live” and interact in the world formed
by patches. Turtles are organised in breeds, that are user defined
groups sharing some characteristics, such as shape, but most im-
portantly breed specific user defined variables that hold the agents’
state.

• Links agents that “connect” two turtles representing usually a spa-
tial/logical relation between them.

2.1 Agents’ simulation and initialization

First of all, the agents are represented by the breed type objects (those
are of the turtles type). In Figure 1 is presented the way the agents
are defined together with the global data structures proprietary to
the agents. We implement in open-source NetLogo the agents’ pro-
cess of execution in the case of the asynchronous search techniques
[10],[20]:

S1. Agents’ simulation and initialization in DisCSP-NetLogo.
First of all, the agents are represented by the breed type objects (those
are of the turtles type). Figure 1 shows the way the agents are defined
together with the global data structures proprietary to the agents.

This type of simulation can be applied for different problems used
at evaluation and testing:

-the distributed problem of the n queens characterized by the
number of queens.

-the distributed problem of coloring of a randomly generated
graph characterized by the number of nodes, colors and the num-
ber of connections between the nodes.



breeds [agents]
globals[variables that simulate the memory shared by all the agents]
agent-own [Message-queue Current-view MyValue Nogoods
nr-constraintc messages-received-ok ... AgentC-Cost]
;Message-queue contains the received messages.
;Current-view is a list indexed on the agent’s number, of the form [v0 v1...],
;vi = -1 if we don’t know the value of that agent.
;nogoods is the list of inconsistent value [0 1 1 ... ], where 1 is inconsistent.
;messages-received-ok,count the number of messages received by an agent.
;nr-cycles -the number of cycles,
;AgentC-Cost - a number of non-concurrent constraint checks

Figure 1. Agents’ definition in DisCSP-Netlogo for the asynchronous
search techniques

-the randomly generated (binary) CSPs characterized by the 4-
tuple (n, m,p1,p2), where: n is the number of variables; m is the
uniform domain size; p1 is the portion of the n·(n−1)/2 possible
constraints in the constraint graph; p2 is the portion of the m ·m
value pairs in each constraint that are disallowed by the constraint.

-the randomly generated problem that has a structure of scale-
free network (the constraint graph has a structure of scale-free
network) [1]. An instance DisCSP that has a structure of scale-
free network have a number of variables with a fixed domain and
are characterized by the 5-tuple (n, m, t,md, γ), where n is the
number of variables, m is the domain size of each variable; t (the
constraint tightness) determining the proportion of value combi-
nations forbidden by each constraint, md=the minimal degree of
each nodes and γ is the exponent that depends on each network
structure. A scale-free network is characterized by a power-law
degree distribution as follows p(k) ∝ k−γ [1].

-the multi-robot exploration problem [3] are characterized by the
6-tuple (n, m, p1, sr, cr, obsd), where:

• n is the number of robots exploring an environment, interact
and communicate with their spatial neighbors and share a few
common information (information about already explored ar-
eas);

• m = 8 is the domain size of each variable; Dom(xi)is the set
of all 8 cardinal directions that a robot Ai can choose to plan
its next movement.

• p1 - network-connectivity, sr - the sensor range of a robot, cr -
the communication range of a robot;

• obsd - obstacles-density. We have considered environments
with different levels of complexity depending on: the number of
obstacles, the size of the obstacles, the density of the obstacles.

For these types of problems used in the evaluation there are Net-
Logo modules that can be included in the future implementations.
The modules are available on the website [21]. For each module
are available procedures for random generation of instances for the
choosen problems, together with many ways of static ordering of the
agents. Also, there are procedures for saving in files the generated
instances and reusing them for the implementation of other asyn-
chronous search techniques. On the website [21] can be found many
modules that can generate problem instances (both solvable and un-
solvable problems) with various structures for the previous problems,
depending on various parameters (uniform random binary DisCSP
generator, scale-free network instance generator for DisCSP). An ex-
ample is presented in Figure 2 for the random binary problems.

S2.Representation and manipulation of the messages. Any asyn-
chronous search technique is based on the use by the agents of some
messages for communicating various information needed for obtain-
ing the solution. The agents’ communication is done according to the
communication model introduced in [16].

breeds [agents-nodes]
breeds [edges]
;nodes = agents, each undirected edge goes from a to b
;edges = links agents that connect two agents-nodes
;representing usually a spatial/logical relation between them.
globals[Orders done nr-cycles domain-colour-list no-more-messages]
agent-own [Message-queue Current-view MyValue Nogoods ChildrenA
ParentA nr-constraintc messages-received-ok ... AgentC-Cost]

includes[”RBP.nls””StaticOrders.nls”]
;are included the modules for generating instances and choosing
a static order for the agents ...
to setup ; Setup the model for a run, build a constraints graph.

setup-globals ; setup Global Variables
setup-patches ; initialize the work surface on which the agents move
setup-turtles we generate the objects of the turtles type that simulate the agents
setup-random-binary-problems ; or LoadRBRFile
; we generate a the types of problems used at the evaluation
; or we load an instance generated and salved previously.
CalculateOrdersMaxCardinality ; is selected from variable-ordering heuristics
setup-DisCSP

;we initialize the data structures necessary for the DisCSP algorithm
end

Figure 2. Templates for agents’ definition in DisCSP-Netlogo for the
random binary problems

The communication model existing in the DisCSP frame supposes
first of all the existence of some channels for communication, of the
FIFO type, that can store the messages received by each agent. The
way of representation of the main messages is presented as follows:
◦ (list ”type message” contents Agent-costs) ;
The simulation of the message queues for each agent can be done

using Netlogo lists, for whom we define treatment routines corre-
sponding to the FIFO principles. These data structures are defined in
the same time with the definition of the agents. In the proposed im-
plementations from this paper, that structure will be called message-
queue. This structure property of each agent will contain all the mes-
sages received by that agent.

The manipulation of these channels can be managed by a cen-
tral agent (which in NetLogo is called observer) or by the agents
themselves. In this purpose we propose the building of a procedure
called go for global manipulation of the message channels. It will
also have a role in detecting the termination of the asynchronous
search techniques’ execution. That go procedure is some kind of a
“main program”, a command center for agents. The procedure should
also allow the management of the messages that are transmitted by
the agents. It needs to call for each agent another procedure which
will treat each message according to its type. This procedure will be
called handle-message, and will be used to handle messages specific
to each asynchronous search technique.

2.2 The Graphical User Interface

S3. Definition and representation of the user interface.
As concerning the interface part, it can be used for the graphi-

cal representation of the DisCSP problem’s objects (agents, nodes,
queens, robots, obstacle, link, etc.) of the patch type. It is recom-
mended to create an initialization procedure for the display surface
where the agents’ values will be displayed.

To model the surface of the application are used objects of the
patches type. Depending on the significance of those agents, they are
represented on the NetLogo surface. In Figure 3, 4 is presented the
way in NetLogo for representing the agents.



(a) Netlogo representation for the graph coloring problem

(b) The 2D square lattice representation for the multi-robot explo-
ration problem

Figure 3. Representation of the environment in the case three problems

S4.Running the DisCSP problems.
The initialization of the application supposes the building of

agents and of the working surface for them. Usually are initialized
the working context of the agent, the message queues, the variables
that count the effort carried out by the agent. The working surface
of the application should contain NetLogo objects through which
the parameters of each problem could be controlled in real time:
the number of agents (nodes, robots), the density of the constraints
graph, etc. These objects allow the definition and monitoring of each
problem’s parameters. For launching the simulation is proposed the
introduction of a graphical object of the button type and setting the
forever property. That way, the attached code, in the form of a NetL-
ogo procedure (that is applied on each agent) will run continuously,
until emptying the message queues and reaching the stop command.
Another important observation is tied to attaching the graphical but-
ton to the observer [10]. The use of this approach allows obtaining
a solution of implementation with synchronization of the agents’ ex-
ecution. In that case, the observer agent will be the one that will
initiate the stopping of the DisCSP algorithm execution (the go pro-
cedure is attached and handled by the observer). These elements lead
to the multiagent system with synchronization of the agents’ execu-
tion. If it’s desired to obtain a system with asynchronous operation,
the second method of detection will be used, which supposes another
update routine [10], [21]. That new go routine will be attached to a
graphical object of the button type which is attached and handled by
the turtle type agents.

In Figure 5 is captured an implementation of the ABT with tem-
porary links for the random binary problems technique that uses the
model presented. The update procedure is attached and handled by
the turtle type agents (Figure 5). These elements lead to a multiagent
system with agents handling asynchronously the messages. Imple-

(a) The 3D square lattice representation

(b) A scale-free network with 900 nodes

Figure 4. Representation of the environment in the case three problems

(a) NetLogo’s graphical interface (b) NetLogo’s code
tab

Figure 5. NetLogo implementation of the ABT with temporary links for
the random binary problems, n=100 agents

mentation examples for the ABT family, DisDB, DBS and the AWCS
family can be downloaded from the website [21].

More details of implementation of the DisCSP/DCOP in Netlogo
are not presented here but are available as a tutorial and download-
able software from [21].

2.3 The evaluation of the asynchronous search
techniques

Another important thing that can be achieved in NetLogo is related
to the evaluation of the asynchronous algorithms. The model pre-



sented within this paper allows the monitoring of the various types
of metrics:

• the number of messages transmitted during the search: messages-
received-ok, messages-received-nogood, messages-received-
nogood-obsolete, etc.

• the number of cycles. A cycle consists of the necessary activities
that all the agents need in order to read the incoming messages,
to execute their local calculations and send messages to the corre-
sponding agents. These metrics allows the evaluation of the global
effort for a certain technique

• the number of constraints checked. The time complexity can be
also evaluated by using the total number of constraints verified by
each agent. It is a measurement of the global time consumed by
the agents involved. It allows the evaluation of the local effort of
each agent. The number of constraints verified by each agent can
be monitored using the variables proprietary to each agents called
nr − constraintc.

• a number of non-concurrent constraint checks. This can be
done by introducing a variable proprietary to each agent, called
AgentC − Cost. This will hold the number of the constraints
concurrent for the agent. This value is sent to the agents to which
it is connected. Each agent, when receiving a message that con-
tains a value SenderC − Cost, will update its own monitor
AgentC − Cost with the new value.

• the total traveled distance by the robots. This metric is specific
to the multi-robot exploration problem [3]. It makes it possible to
evaluate if an algorithm is effective for mobile and located agents
in an unknown environment.

The models presented allow real time visualization of metrics.
During runtime, using graphic controls, various metrics are displayed
and updated in real time, after each computing cycle. Also, the met-
rics’ evolution can be represented as graphics using plot-like con-
structions (models from [21] include some templates).

3 Enhancing DisCSP-Netlogo from simulation to
real-execution of agents in distributed
constraints

3.1 The architecture of the multi-agent system
HubNet is a technology that lets you use NetLogo to run participa-
tory simulations in the classroom. In a participatory simulation [18],
a whole class takes part in enacting the behavior of a system as each
student controls a part of the system by using an individual device,
such as a networked computer or mobile device (tablets and phones
with Android, etc). It is based on a client-server architecture, where
HubNet hardware includes an up-front computer (server, the ”hub”)
capable of addressing a network of nodes (currently, networked com-
puters, mobile devices with Android or TI-83+ calculators) and a
display capability (e.g. computer projection system) enabling an en-
tire class to view the simulation. HubNet enables many users at the
”nodes” to control the behavior of individual objects or agents and to
view the aggregated results on a joint display.

The software architecture of HubNet [17, 18] contains an NetL-
ogo application called Computer HubNet (HubNet server) and many
instances of the client application. Computer HubNet is regarded as
a main server and uses networked computers as nodes. The Hub-
Net architecture can support other devices as nodes (mobile device
with Android). The network layer implements flexible communica-
tion protocols that include the ability to upload and download data

sets, support real-time interaction as in network computer games, etc
[18]. The activity leader uses the NetLogo application to run a Hub-
Net activity (HubNet server). Participants use a client application to
log in and interact with the HubNet server.

Starting from the HubNet architecture we propose a new model
that allows modeling and running various search algorithms. The ba-
sic idea is to move the agents to run on each network node (computer
or mobile device) as opposed to the simulator mode, where they are
simulated and run on the same computer. We will adapt this architec-
ture to allow distributed running of the agents in the network. In Fig.
6 is presented the HubNet architecture.

Figure 6. The DisCSP architecture for simulating and real-execution of
agents in distributed constraints

In this architecture can be remarked the two entities of the dis-
tributed application. That is, the central application - HubServer and
the client applications - HubNetClient. The central application (Hub-
Net server) contains the definitions of the agents and the procedure
for handling the communication chanels. The HubNet clients will be
attached to each agent.

3.2 A methodology of implementation and
evaluation for the asynchronous search
techniques in DisCSP-NetLogo in the
real-execution of agents mode

In this paragraph is presented a methodology of implementation for
the asynchronous search techniques in NetLogo, using the model
presented in the previous paragraph. That methodology supposes the
identification of the two entities of the distributed application: the
central application - HubServer and the client applications - Hub-
NetClient. Any implementation based on the presented model, will
require us to follow the next steps:
S1. Create a NetLogo model according to the previous model for the
asynchronous search techniques and for the types of problems used
at the evaluation. First, the NetLogo model will require an initializa-
tion stage. That includes the interface initialization, initialization of
the network module, the activation of HubNet clients and generat-
ing the agents. The proposed solution supposes for procedures called
setup, login-clients, GenerateProblems. At a minimum it will need
the following lines of code in Fig. 7.

S2. Next, all models must also have a go (update) procedure. The
wrapper runs the NetLogo program by asking it to loop for a certain
number of times and allows the finalizing of the DisCSP algorithm.



to setup ; Setup the model for a run, build a constraints graph.
setup-globals ; setup Global Variables
setup-patches ; initialize the surface of the application
are used objects of the patches type
hubnet-reset; we initialize the network mode, which will ask
;the user for a session name and
;open up the HubNet Control Center
...

end
(a) The Setup Procedure in DisCSP-Netlogo

to login-clients ; allows agents-HubNet Client to log into the
;activity without running the model or collecting data

while [ hubnet-message-waiting? ] [
hubnet-fetch-message ;get the first message in the queue
ifelse hubnet-enter-message?; The clients send messages when it login
[ create-new-agents
hubnet-send agent-id ”Accept-agent” ”Yes”]
[ ..]
]end

(b) The login procedure

to GenerateProblems ; Build a constraints graph.
setup-random-problem ; we generate the types of problems

used at the evaluation.
CalculateOrders; is selected from variable-ordering heuristics
...

end
(c) The GenerateProblems Procedure in DisCSP-Netlogo

Figure 7. Initialization of the multi agent system.

Usually for the DisCSP algorithms, the solution is generally de-
tected only after a break period in sending messages (this means there
is no message being transmitted, state called quiescence). In such a
procedure, that needs to run continuously (until emptying the mes-
sage queues) for each agent, the message queue is verified (to detect a
possible break in message transmission). In the case of the extended
solution in which the agents run as HubNet clients, the checking is
done by each agent, but the informations are transmited to the cen-
tral application (HubNet server) which decides (in the case that all
the queues are empty) that a state called quiescence is reached.

Sample code for the go procedure in the case of asynchronous
search techniques can be found in Fig. 8.

Another observation, each HubNet client signals the reception of
a message and transmits to the HubNet server application that thing,
for the latter to run the agent’s code. The solution with HubNet
clients (of the NetLogo type) doesn’t allow running the code effec-
tively by the clients. In a ulterior version we will extend the HubNet
clients functionality so that they will run entirely the code (using Java
modules that communicate using sockets).

Another observation, the HubNet clients don’t allow direct trans-
mission (peer-to-peer) of the messages. They are brokered by the
central HubNet server application.

The procedure should also allow the management of messages that
are transmitted by the agents. For that, when a HubNet client re-
ceives a message, it needs to call another procedure (that is called
handle-message) and is used to handle messages specific to each
asynchronous search technique. The handling of the communication
channels will be performed by this central agent. These elements will
lead to a variant of implementation in which the synchronizing of the
agents’ execution is done.

The distributed application’s work flow is composed of the follow-
ing steps:

to go // The running procedure
every 0.1 [

set no-more-messages true
;get commands and data from the clients

listen-to-clients -as long as there are more messages from the clients keep processing them.
while [ hubnet-message-waiting? ] [
hubnet-fetch-message ;get the first message in the queue
ifelse hubnet-enter-message?; The clients send messages when it login
[ hubnet-send hubnet-message-source ”Accept-agent” ”No” ]
[ if hubnet-exit-message?; The clients send messages when it logout

[Show ”Error - too few agents ” : stop ]
[Process-Queue hubnet-message-tag ]

]
ask-concurrent agents [

if (not empty? message-queue)[ set no-more-messages false]
]
ifelse (no-more-messages and Not done)

[WriteSolution : hubnet-broadcast ”Solution ”Yes” : stop]
[if (done)
[show ”No solution” : hubnet-broadcast ”Solution” ”No solution” :stop]

end

Figure 8. The Go Procedure in DisCSP-Netlogo for the asynchronous
search techniques with synchronization of the agents’ execution

S1. Start the HubNet Server. It is done by pressing the initial-
ization button setup. The runtime parameters are set: number of
variables, their domains, the constraints graph density (p1-network-
connectivity), etc. The button will initialize the network support.

S2. Activating the connections with the clients. For that press
the login button on the computer with the HubNet server to al-
low the clients to connect. On each client computer is launched the
clients manager (HubNet Control Center). Using that tool the Hub-
Net Clients are opened, a username is chosen and connect to the main
activity (to HubNet Server). When all the HubNet clients have con-
nected the login button is disabled.

S3. An instance for the evaluated problem is generated. For that
the button GenerateProblems is pressed. Optional, the Layout button
can be used, to redraw the surface on the screen, until we consider it
to be pretty.

S4. The button setup-DisCSP is activated. That will initialize the
data structures necessary for the DisCSP/DCOP algorithm.

S5. The main application is run (on the HubServer) using the go
button.

S6. Finally, the measurements and the problem’s solution are col-
lected.

In Fig. 9 are presented two captures for the two entities, HubNet-
Server and HubNetClient.

4 Running on a Linux cluster

In this paragraph we will present a methodology to run the proposed
NetLogo models in a cluster computing environment or on a single
machine. We utilize the Java API of NetLogo as well as LoadLeveler.
LoadLeveler is a job scheduler written by IBM, to control scheduling
of batch jobs. This solution is not restricted to operate only in this
configuration, it can be used on any cluster with Java support and it
operates with other job schedulers as well (such as Condor).

Such a solution will allow running a large number of agents
(nodes, variables, robots, queens, etc.). The first tests allowed run-
ning of as much as 500 agents, in the conditions of a high density
constraint graph. The first experiments were done on the InfraGrid
cluster from the UVT HPC Centre [23], on 100 computing systems
(an hybrid x86 and NVIDIA Tesla based). InfraGRID is an Linux
only cluster based on a mixture of RedHat Enterprise Linux 6 and



(a) The HubNetServer (b) The HubNetClient

Figure 9. NetLogo implementation of the ABT -HubNet version

CentOS 6. For Workload Management, JOB execution is managed at
the lowest level by IBM LoadLeveler.

The methodology proposed in the previous paragraph that uses
the GUI interface will run on a single computer. In this paragraph we
will present a new solution, without GUI, that can run on a single
computer or on a cluster.

The proposed approach uses the NetLogo model presented previ-
ously, runnable without the GUI, with many modifications. In order
to run the model in that manner is used a tool named BehaviorSpace,
existent in NetLogo. BehaviorSpace is a software tool integrated with
NetLogo that allows you to perform experiments with models in the
“headless” mode, that is, from the command line, without any graph-
ical user interface (GUI). This is useful for automating runs on a
single machine, and can also be used for running on a cluster.

BehaviorSpace runs a model many times, systematically varying
the model’s settings and recording the results of each model’s run.
Using this tool we develop an experiment that can be runned on a
single computer (with a small number of agents) or, in the headless
mode on a cluster (with a large number of agents).

We will now present the methodology for creating such an exper-
iment. The steps necessary for the implementation of a multiagent
system are as follows:
S1. Create a NetLogo model according to the previous model for the
asynchronous search techniques and for the types of problems used
at the evaluation. For running it on the cluster and without GUI some
adaptations have to be made. First, the NetLogo model must have
a procedure called setup to instantiate the model and to prepare the
output files. At a minimum it will need the following lines of code in
Figure 10.

to setup ; Setup the model for a run, build a constraints graph.
setup-globals ; setup Global Variables
setup-patches ; initialize the work surface on which the agents move
setup-turtles

; we generate the objects of the turtles type that simulate the agents
setup-random-problem

; we generate the types of problems used at the evaluation.
setup-DisCSP

; we initialize the data structures necessary for the DisCSP algorithm
end

Figure 10. The Setup Procedure in DisCSP-Netlogo.

Next, all models must also have a go (update) procedure. In such
a procedure, that needs to run continuously (until emptying the mes-
sage queues) for each agent, the message queue is verified (to detect

a possible break in message transmitting).
The procedure should also allow the management of messages that

are transmitted by the agents. The procedure needs to call for each
agent another procedure (that is called handle-message) and is used
to handle messages specific to each asynchronous search technique.

to go // The running procedure
set no-more-messages true
set nr-cycles nr-cycles + 1
ask-concurrent agents [

if (not empty? message-queue)[
set no-more-messages false]]

if (no-more-messages) [WriteSolution
stop]
ask-concurrent agents [handle-message]

end

Figure 11. The Go Procedure in DisCSP-Netlogo for the asynchronous
search techniques with synchronization of the agents’ execution

The first solution of termination detection is based on some of the
facilities of the NetLogo: the ask-concurrent command that allows
the execution of the computations for each agent and the existence
of the central observer agent. The handling of the communication
channels will be performed by this central agent. These elements will
lead to a variant of implementation in which the synchronizing of the
agents’ execution is done. Sample code for the go procedure in the
case of asynchronous search techniques can be found in Figure 11.

S2. Create an experiment using BehaviorSpace and parse the Net-
Logo file into an input XML file (so that it can be runned in the head-
less mode, that is without GUI). In Figure 12 is presented a simple
example of XML file.
<experiments>

<experiment name=”experiment” repetitions=”10” >
<setup>setup< /setup>
<go>go-mrp< /go>
<final>WriteMetrics< /final>
<exitCondition>Final< /exitCondition>
<enumeratedValueSet variable=”p1-network-connectivity”>
<value value=”0.2”/>

...
< /experiment>

< /experiments>

Figure 12. The XML file for the multi-robot exploration problem

To finalize the run and adding up the results it is recommended the
use of a Netlogo reporter and a routine that writes the results. The



run stops if this reporter becomes true.
S3. Create a Linux shell script (in sh or in bash) that describes the

job for LoadLeveler. Once the Netlogo model is completed with the
experiment created with the BehaviorSpace tool, it is time to prepare
the system for multiple runs.

Figure 13. Architecture of a multiagent system with synchronization of
the agents’ execution

In Figure 13 is presented this multiagent system’s architecture for
running on a cluster of computers.

5 Discussion
There are very few platforms for implementing and solving DisCSP
problems: DisChoco [19], DCOPolis [13] and FRODO [5]. In [19] a
DisCSP/DCOP platform should have the following features:

- be reliable and modular, so it is easy to personalize and extend;
- be independent from the communication system;
- allow the simulation of multiagent systems on a single machine;
- make it easy to implement a real distributed framework;
- allow the design of agents with local constraint networks.

It is interesting to see if the proposed platform brings some bene-
fits compared to other platforms. The solution presented in this paper,
based on NetLogo, has these features:

- the modules can be adapted and personalised for each algorithm.
There is a very large community of NetLogo users that can help
for development.

- it allows the communication between agents, without being neces-
sary to call directly the communication system (it is independent
of the network support);

- the models can allow the simulation of multiagent systems on a
single machine, and also on a cluster;

- DisCSP-NetLogo provides a special agent Observer, that is re-
sponsible for simulation initialisation and control interface. The
AgentObserver allows the user to track operations of a DisCSP
algorithm during its execution. Also, there are 4 tools (Globals
Monitor, Turtle Monitor, Patch Monitor and Link Monitor) that
allow monitoring of global variables values, the values of the vari-
ables associated to the agents.

- there are facilities such as agentsets that allow the implementation
of agents that manage more variables.

- manipulating large quantities of information requires the use
of databases, for example for nogood management, using the
SQL extension of NetLogo we can store and access values from
databases.

- NetLogo allows users to write new commands in Java and use
them in their models (using extensions).

Another discussion refers to the advantages of running NetLogo
models on a cluster of computers in the variants with complete Net-
Logo or with minimal install (core branch).

In most of the articles about DisCSP/DCOP, the evaluations of
the algorithms are made for maximum 100 agents. The cluster al-
lowed running instances over 500 agents, with various difficulties
(even 1000 but with a lower difficulty)[10]. It is interesting to see
what is the effect of running the models on a cluster of computers,
if the runtime is reduced for the analyzed techniques. For that, we
performed some empirical tests with a variable number of agents
(n=500 and n=1000). We examined the performance of AWCS in
scale-free networks (we implemented and generated in NetLogo both
solvable and unsolvable problems that have a structure of scale-free
networks). Scale-free networks are generated with the following pa-
rameters: nodes = 500, |Di| = 10, md = 4 and γ = 1.8, respectively
nodes = 1000, md = 4 and γ = 2.1.

For the evaluations, we generate five scale-free networks. For each
network, the constraint tightness is fixed at 0.4 and 100 random prob-
lem instances are generated. The runs were performed in three vari-
ants: on a single computer using the model with GUI (C1), on a sin-
gle computer, but without GUI (headless (C2)) and on the Infragrid
cluster (C3). For each was counted the total amount of time for run-
ning 100 instances. The results are the folowing: Nodes=1000, C1–
8h,53min, C2–3h,8min and C3–38min, respectively Nodes=500,
C1–47min, C2–16min and C3–5min.

The analysis of the results shows that the solution running on a
cluster of computers allows problems with big dimensions for the
addressed problems, and also a short runtime. The platform based on
NetLogo has the following differences with the other platforms:

1. The sources of the algorithms are accessible, one can obtain im-
plementations derived from the DisCSP/DCOP algorithms.

2. The programmer has complete access to the algorithms code and
can intervene.

3. The possibility to run on a cluster of computers allows the simu-
lation of problems with thousand or tens of thousands agents. In
most of the studies performed, one can remark that most of the
tests are done on problems with a small number of agents (below
100).

In Table 1 are presented the difference between platforms for imple-
menting and solving DisCSP/DCOP problems.

6 CONCLUSION
In this paper we introduce an model of study and evaluation for the
asynchronous search techniques in NetLogo using the typical prob-
lems used for evaluation, model called DisCSP-NetLogo.

An open-source solution for implementation and evaluation of the
asynchronous search techniques in NetLogo, for a great number of
agents, model that can be run on a cluster of computers is presented.
Such a tool allows the use of various search techniques so that we
can decide on the most suitable one.

In this paper we presented a methodology to run NetLogo models
in a cluster computing environment or on a single machine, varying



Table 1. The difference between platforms for implementing and solving DisCSP/DCOP problems

The platform Support for
implementing
the DisCSP
algorithms

Support for
implementing
DCOP algo-
rithms

Support for real
running in an dis-
tributed environ-
ment

Access to algo-
rithm sources

Implementation
of most of the
DisCSP algo-
rithms

Implementation
of most of the
DCOP algo-
rithms

Being able to run
on a cluster

DisCo Yes Yes No No Yes Yes No
DisChoco Yes Yes Yes Yes partial partial Yes
DCOPolis No Yes Yes No No Yes ?
FRODO No Yes Yes No No Yes Yes
DiCSP-Netlogo Yes Yes Yes Yes Yes partial Yes

both parameter values and/or random number of agents. We utilize
the Java API of NetLogo as well as LoadLeveler. The solution with-
out GUI allows to be run on a cluster of computers in the mode with
synchronization, as opposed to the GUI solution that can be run on a
single computer and allows running in both ways: with synchroniza-
tion or completely asynchronously.

The open-source solution presented in this paper can be used as
an alternative for testing the asynchronous search techniques, in par-
allel with the platforms already consecrated as DisChoco, DCOPo-
lis, FRODO, etc. A comparison with the main evaluation and testing
platforms for distributed constraints search and optimization algo-
rithms is presented.

As future developments, we will try to implement the modules on
the HPC Repast platform, in a Logo-like C++. This thing will allow
running on supercomputers with a very high number of agents (above
100,000 agents).
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The Post-Modern Homunculus 
Eric Neufeld and Sonje Finnestad1 

 
Abstract.1  Throughout the ages, magicians, scientists and 
charlatans have created life-like artifacts purported, in some cases, 
to be intelligent. In their day, these artifacts were remarkable, but 
the question arises as to whether they could really think. In one 
famous case, the Chess Player, the intelligence was literally a little 
person, hidden inside the machine, doing the intelligent work. 
Analogously, throughout the history of philosophy, and cognition, 
there have been theories to explain intelligence in humans, how it 
works, whether it can be replicated or imitated with various 
artifacts, and how we then evaluate our progress towards achieving 
intelligence with such artifacts once created? A philosophical 
problem with many such theories is that they amount to what is 
called a homunculus argument – the account, upon close scrutiny 
reveals a “little one” (homunculus) somewhere in the mind that is 
responsible for thinking, thereby regressing the problem a step, 
rather than answering it. For most of the computing era, the 
Imitation Game put forward by Alan Turing has been considered 
the gold standard for deciding intelligence, though recently Hector 
Levesque has pointedly argued that the time has come to abandon 
Turing’s test for a better one of his own design, which he describes 
in a series of acclaimed papers. In particular, we argue that 
Levesque, who has cleverly found the ‘homunculus’ in the 
arguments of others, has essentially regressed the problem of 
intelligence to a  homunculus in his own system. 

1 INTRODUCTION 
 
In 18th century Europe, many people were fascinated by the living 
anatomies created by Jacques de Vaucanson. His first creation was 
a life-sized flute player that played 12 songs on a real transverse 
flute, a challenging task for any human, without significant practice 
and training. The French Academy of Science took it seriously and 
concluded that: this machine was extremely ingenious; that the 
creator must have employed simple and new means, both to give 
the necessary movements to the fingers of this figure and to modify 
the wind that enters the flute by increasing or diminishing the 
speed according to the different sounds, by varying the position of 
the lips, by moving a valve which gives the functions of a tongue, 
and, at last, by imitating with art all that the human being is 
obliged to do.  [history-computer.com, 2016] 
     Another automaton played 20 different tunes on a flute and – 
with the other hand – the tambourine and, apparently, played them 
well. But most marvelous of all was The Digesting Duck. The 
duck, which had more than 400 moving parts (perhaps over 400 in 
each wing – opinions differ) could flap its wings, drink, eat, digest 
grain, and defecate, all in a remarkably realistic manner.  
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     All its movements, external and internal, were copied from 
nature. There were, of course, limits to what could be achieved: “I 
do not claim that this digestion is a perfect digestion, able to make 
blood and nourishing particles to nurture the animal; to reproach 
me for this, I think, would show bad grace.” Nonetheless, 
“attentive people will understand the difficulty to make my 
automaton perform so many different movements.” None of these 
automata would have been mistaken by humans for real, live 
entities, human or avian, and that was never the intent: they were 
truly remarkable mechanical imitations of life. 
      Another notable automaton – though for rather different 
reasons – was Maelzel’s Chess-Machine, created by Baron von 
Kempelen and improved by Johann Nepomuk Maelzel [3]. Unlike 
Vaucanson, Maelzel made fantastic claims for his automaton: he 
claimed that it could actually play chess. And indeed it did play a 
strong game of chess, beating – among others – Benjamin Franklin 
– but was eventually exposed as a hoax by Edgar Allen Poe, who 
was certain that no mere machine could have the intelligence 
necessary to play chess. Although mechanically ingenious as 
regards how it moved the pieces, the artifact contained a concealed 
human chess player that actually decided the moves. Inside the 
mechanism, there was a homunculus!  
     Why tell this curious tale? Creation of artificial intelligence has 
been one of humanity’s long-standing dreams, and many believe it 
to be within the realm of possibility – so much so, that many have 
been willing to believe the hoaxes perpetuated by the likes of 
Maelzel for some time. In more modern times, the homunculus 
slips in benignly, or unintentionally. That is, theories arise in 
philosophy and cognition, and it takes some scrutiny to determine 
or detect the presence of a homunculus. For instance, a theory of 
human vision might note that the human eye works much like a 
camera, with the lens projecting an upside-down image of the 
world on the retina, which some internal mechanism in the brain 
can trivially watch and interpret. This example is simple, but the 
“internal mechanism” is a homunculus that has solved the problem 
we proposed to explain. (This is an oversimplified presentation of 
the Cartesian Theatre [3].) Sometimes homunculus arguments are 
similar to regression arguments. 
     In a series of articles, several authors, notably Hector Levesque, 
revisit key foundational questions in artificial intelligence. 
Levesque, although he does not use the term homunculus, 
brilliantly uncovers one [7] in the celebrated Chinese Room 
thought experiment of John Searle. (We disagree somewhat with 
his explanation, but more on that later. His ‘reveal’ is nonetheless 
astonishing.) 
      Here’s the rub. In other papers [8,9], Levesque goes on to 
explore foundational questions in Artificial Intelligence – whether 
behavior is sufficient or necessary and at one point  asks whether 
the Turing Test is obsolete and should be replaced by something 



else, and poses a very clever constructive alternative. His claim 
was startling enough to make the New Yorker, a significant 
achievement. However, we argue that that, one, Levesque’s new 
test also uses (inadvertently) a homunculus argument (although it 
was very hard to find), and two, that the Turing test is of a 
fundamentally different character than many of the other landmark 
tests that have come and gone in AI. In fact, in light of the special 
theme of this conference on AI and Human Values, we make the 
strong claim that Turing’s test transcends formal science, whereas 
most of the other artificial intelligence tests are benchmarks or 
milestones. Other kinds of judgments also transcend [or something 
like that?] also transcends science, and so these considerations 
intersect with this central theme of human values. 
      The following elaborates these points. 

2 INTRODUCTION 

2.1 The paradox of mechanical reason 
John Haugeland [4], in his entertaining textbook, discusses what he 
describes as “The Paradox of Mechanical Reason.” (We chose this 
reference because it is an accessible to both computer scientists and 
philosophers.) The paradox of mechanical reason is associated with 
the ‘computational model’ of reason as “the manipulation of 
meaningful symbols according to rational rules (in an integrated 
system)”. (In the heyday of knowledge representation, this was 
sometimes called the physical symbol system hypothesis [11].)  
      The puzzle is this: if the manipulator of the symbols pays 
attention to their meaning, can it be entirely mechanical? After all, 
it somehow “knows” what the symbols mean. But if it doesn’t pay 
attention to meanings, can it truly reason? To put it in a 
computational setting, imagine a machine generating sentences by 
putting symbols together. If the machine pays no attention to the 
meaning, won’t most of the output be rubbish, and won’t any 
sensible prose be the results of chance? Or – if the sentences are 
quite engaging, must it be that there is something more than a 
machine producing them? Hence the paradox: “if a process or 
system is mechanical, it can’t reason; if it reasons, it can’t be 
mechanical.”  
      Note how we have hedged our language. We don’t at this time 
wish to altogether rule out the possibility of building a successful 
mechanical reasoner. Perhaps we, at this point in time, are 
insufficiently skilled to see our way through to the solution, but 
one day someone may find that it is possible to build a mechanical 
reasoner with a handy built-in symbol manipulator that does a 
terrific job. Now the question arises: how does this built-in symbol 
manipulator work?  
      The argument regresses. Either the manipulator pays attention 
to the meaning of the symbols, or it does not. If the manipulator 
pays attention to ‘meaning’, how does it do what it does? And, to 
the contrary, if it doesn’t, how does it accomplish what it does? 
Now we must explain the workings of the manipulator. It’s a 
homunculus – a hidden version of what we are purporting to study 
tucked in, usually unnoticed. Since we are “explaining intelligence 
by presupposing it” - an endless regress of explanatory homunculi 
seems unavoidable.  
      Haugeland argues that we are not stuck with an infinite regress 
if the manipulator-homunculus can be recursively decomposed into 
progressively smaller and ‘dimmer’ homunculi until “the last have 
no intelligence at all.” But, to the best of our knowledge, this 

strategy has not resulted in any notable successes, though one 
might argue it bears some resemblance to neural nets and/or deep 
learning (which have yet to pass the Turing Test). Nor have we 
found a result that handles just the very last step – taking the 
dimmest of the homunculi and powering them by unintelligent 
machines. 
      We return to Haugeland’s treatment of the paradox. Here, his 
‘fundamental strategy’ is redescription or interpretation, which is 
“redescription grounded in the coherence of a text. (Truth is part of 
this, but not the whole.) The two sides of the paradox, according to 
Haugeland, represent “two different modes of description. From 
one point of view, the inner players are mere automatic formal 
systems, manipulating certain tokens in a manner that accords with 
certain rules, all quite mechanically. But from another point of 
view, those very same players manipulate those very same tokens – 
now interpreted as symbols – in a manner that accords quite 
reasonably with what they mean.”  
      This still leaves us with what Haugeland calls the mystery of 
original meaning. Haugeland accepts that there is a difference 
between what he calls original meaning that is ‘already there’ in 
what is interpreted and derivative meaning that derives (only) from 
interpretation. “The questions remain: Which symbolic systems 
have their meanings originally (non-derivatively) and why?” 
      He suggests that the answer may have something to do with 
what he calls semantic activity. Semantically active symbols 
“interact and change” in ways that are “semantically appropriate”. 
They are active in ways that make sense. Nonetheless, the matter is 
complicated. A calculator is semantically active but ‘in some 
intuitively compelling sense, it “has no idea” what numbers are’. 
(But see below; Levesque may disagree.) On the other hand, when 
it comes to exceedingly sophisticated robots, possessing ‘mobile 
and versatile bodies’ and ‘capable (to all appearances anyway) of 
the full range of “human” communication, problem solving, 
artistry, heroism, and what have you’, if such things ever exist, 
“then by all means, they can have original meaning.”  
      Let’s rephrase this discussion of semantics in the language 
commonly used in the Knowledge Representation community, 
especially the logicist group.   
      First, let us begin with a set of formal marks – a straightforward 
language of characters and symbols. These can be alphanumeric 
characters and numerals, as well as marks interpreted as logical or 
relational operators, and so on. Of course, the best example of this 
is natural language, but AIers, especially those in the Knowledge 
Representation community, have hoped for something where the 
core symbols are more rigidly defined, and vagueness and 
imprecision are incorporated by adding rather precise formalisms 
such as error bounds and probabilities that allow the expression of 
uncertainty though they quantify the amount and nature of the 
certainty quite exactly.  
      Suppose also, that on the mechanical side, we develop a 
syntactic machine that can manipulate these symbols according to a 
set of fixed rules that pays no attention to their meaning. And 
suppose finally we are quite good at tuning this machine so that it 
gives us the kinds of answers we want. (In fact, by looking at the 
work in logic programming and automated theorem proving, it 
seems we actually are quite good at this.) 
      On the reasoning side, we develop a semantics (set of 
meanings) for the formal marks, that is, a mapping from the formal 
marks into objects and relationships in real or artificial worlds 
about which we wish to reason, that tells us humans how to 
interpret the formal marks, and how to interpret new combinations 



of the formal marks that might arise, and furthermore, this process 
of interpretation of the formal marks never, ever yields an untruth, 
once the meanings are defined.   
      Because we are so clever at tuning the syntactic machine to 
give us the answers we want, suppose we get to a point where we 
develop an actual meta-proof that shows that the semantical side is 
exactly equivalent to the syntactical side, in this sense: for every 
truth produced via the semantical rules, there is a way to derive the 
same sentence on the syntactical machine, and vice-versa. The 
formal characterization of this is that our language of formal marks 
is sound and complete. Moreover, what we have presented as a 
kind of thought experiment actually exists: the first order predicate 
calculus has this property; it has a formal semantics and a simple 
syntax (including rules of proof), such that anything true vis-à-vis 
the semantics, can also be can be derived by the machine, which 
knows not what it says. And whenever a machine derives a 
sentence of symbols, it is true in the semantical sense. 
      Thus spake Tarski: “Snow is white if ‘snow is white’.” The 
machine can derive anything that is true in the real world, and 
anything the machine derives is true in the real world. This, surely, 
was a revolutionary advance for the possibilities of mechanical 
reason! It certainly was true in mathematics, and this belief was 
widely held in the early days of “logic-based AI”, and even revived 
somewhat because of the computational efficiency and simplicity 
of the resolution rule. 
      We return to this paradox shortly. We first need to give an 
example of a homunculus argument, so we use Levesque’s critique 
of Searle.  

2.2 Searle’s Chinese Room 
Searle’s Chinese Room [12] offers a different take on the paradox 
of mechanical reasoning. Searle wants to create a divide between 
outward behavior and true intelligence – whatever that means. 
“Imagine,” he says, “a native English speaker who knows no 
Chinese locked in a room full of boxes of Chinese symbols (a data 
base) together with a book of instructions for manipulating the 
symbols (the program).” People outside the room pass in questions 
to the English speaker, who mechanically (!) consults his 
instruction book, retrieves certain answer symbols from the boxes, 
and returns them to the asker. 
      Suppose further that the asker is pretty happy with the answers. 
The question asked when Searle’s puzzle is discussed, especially in 
AI circles, is “Is the behavior of the English speaker intelligent?”  
      Responses to this question can be divided into two major 
camps. The first camp argues that his or her behavior is intelligent. 
If we can build the computational equivalent of Searle’s Chinese 
Room to solve other real world problems, generally getting good 
answers, what do we care whether it understands what it is doing? 
We have a system that appears, for all intents and purposes, to be 
intelligent, and we can trust its answers. This seems obvious. 
      The second camp argues that the English speaker’s behavior is 
not intelligent, because the English speaker has no idea as to what 
is being discussed, even if he or she is a fully capable human. This 
also seems obvious. 
      From the point of view of constructing intelligent computers, 
both answers have some merit. The first camp puts pragmatics 
first; the second camp wishes to bring a deeper notion of 
understanding into the argument. 

      The question can also be asked in a different way. “Is the 
behavior of the system intelligent?” Putting the question this way, 
the system includes the English speaker, the Chinese Room full of 
boxes, and the instruction manual. 
      This question is much tougher. The English speaker is reduced 
to a cog in a more complex system – it has been reduced to one of 
Haugeland’s dimmest (or even most mechanical) homunculi, but 
the whole seems to be greater than the sum of the parts, which 
includes the all-important instruction manual.  
      Thirty years later, Searle [13] restated the point of the 
argument: “Computation is defined purely formally or 
syntactically, whereas minds have actual mental or semantic 
contents, and we cannot get from syntactical to the semantic just by 
having the syntactical operations and nothing else.” In other words, 
“no”. Searle’s view is that neither the person nor the system is 
intelligent, because however clever the answers of the system are, 
the system does not understand what it is doing. 
      We do not intend to discuss the many responses to Searle’s 
argument or even the question of its validity, because we believe, 
as Levesque [7] baldly states, there is no such instruction book – 
and the question as posed is moot.  
      Levesque writes that “Searle exploits the fact that we do not yet 
have a clear picture of what a real book for Chinese would have to 
be like.” Why? Because such a book would have to have an answer 
for every possible question asked in every possible context.  
      In other words, the instruction book is a homunculus!  
      For Searle’s Chinese Room to function as described, someone 
would have had already solved the problem of mechanical reason 
perfectly and incorporated it into the instruction book, whether this 
takes the form of paper, a hard drive, a computer, a database, or a 
distributed system. 
      This homunculus argument is a little different from the 
Cartesian Theatre. Searle doesn’t use the homunculus to explain a 
phenomenon, but its presence in the story renders the argument 
somewhat moot: If we choose to agree that the instruction manual 
exists, Searle’s argument can stand, but if we believe it cannot exist 
without solving the AI problem, then there is not much point to 
continuing the discussion. 
      Now – at this point, we diverge significantly from Levesque, 
who takes a different tack. After saying he wishes to argue there 
are no such instruction books for Chinese, Levesque states that 
proving such a point will be a challenge. “All we can do is wave 
our hands.” He points out the variety and complexity of the 
interpretations of the Chinese Room Problem. Instead, Levesque 
uses an analogous argument, which he calls the Summation Room.   
      The Summation Room, as we might expect, contains a person 
with no understanding of addition. The input to the analogical 
“English speaker” is a list of numbers, and the output is the sum of 
these numbers. The instruction manual contains the answers to all 
possible sums. (Levesque restricts the size of the numbers so that 
the book is finite.) Levesque argues that such a book, one that 
would enable a person to produce the correct answer to an addition 
question without actually performing addition, cannot exist, 
because the new instruction manual would have to be bigger than 
the known universe. (We are omitting some details for reasons of 
space; however, we remark that we don’t have a problem with a 
book in a thought experiment being larger than the known 
universe.) 
      Levesque then gives an alternate argument. He suggests that it 
would be possible to create another kind of instruction manual, one 
that defines a correct algorithm for addition. We agree that such a 



book would be easy to create and would be of a modest size, and 
that a reasonably intelligent human would be able to follow the 
instructions. 
      However, he contends, someone using such a book “actually 
learns addition, and not merely a simulation of addition that 
happens to produce the right external behavior.” (Our emphasis.) 
      Because we argue that the real problem is that Searle’s 
description included a homunculus in the form of an instruction 
book, we believe that Levesque’s rejoinder misses the point. His 
first Summation Room might be too big to build in our present 
universe, but given a somewhat bigger one, would produce the 
desired behavior without necessarily understanding the addition. 
Where we disagree is with the claim, in his second example, that 
someone following his algorithm for addition (manipulating formal 
marks to produce something that looks like a sum) would 
necessarily understand addition. We no more believe this than we 
believe, for example, that an electronic calculator understands 
addition. (McCarthy [10] talks of thermostats having beliefs, albeit 
with a limited range of ideas, but in a way very different from the 
present discussion.) 
      Thus, although Levesque’s observation that there is no such 
book is an astonishing insight, we believe that the problem has a 
different character than Levesque’s argument – which makes no 
mention of a homunculus – would suggest. 

2.3 Mechanical reason, revisited 
As mentioned earlier, the first order predicate calculus was 
believed to be a resolution of the paradox of mechanical reason. 
‘Snow is white’ is a syntactic conclusion of a mechanical reasoner 
if and only if “Snow is white” in the real world described by the 
semantic interpretation of the symbols. Physical symbol systems 
abounded during different periods of AI’s evolution – scripts, 
frames, expert systems, rule-based systems – but the soundness and 
completeness of the first order predicate calculus gave logicians 
(sometimes referred to as the “logic mafia”) a firm foothold in the 
AI mainstream.  
      We remark at this juncture that the soundness of and 
completeness of logic as an answer to the paradox of mechanical 
reason also introduces a homunculus into the picture. The 
homunculus enters when we claim there is a perfect, or even a near 
perfect, assignation of semantics, specifically the meaning of 
symbols in the real world, and the relationships among them.  
      Just as there can be no such instruction book in Searle’s room, 
there can be no such map in formal logic, at least at least where 
pragmatic or even mundane real-world domains are concerned. 
      Certainly, it is possible to make certain maps, some of which 
are impressive. We can assign semantics from formal marks to 
concepts such as numbers and objects and sets, and slowly, but 
surely, build up all of arithmetic, probability theory, geometry, the 
real numbers, physics, gravity, times, and so on. The peculiar 
reality is that it is nonetheless hard to get into the subtleties and 
nuances that simple natural language utterances can carry, not to 
mention the interpretations imposed by the contextual conditions in 
which the language is used. 

3 THE TURING TEST 
Turing, a forerunner both in theories of computing and artificial 
intelligence wrote a perspicacious paper in Mind [13]. Although 

the computers of his era were toys by modern standards, Turing 
foresaw their potential.  

To explain the digital computer, a brand-new device, Turing 
described a formalism that came to be known as a Turing machine, 
which consisted of a read-write head that moves to the right or the 
left along a one-way infinite tape, and reads, writes or erases zeros, 
ones, and blanks. A large literature agrees that this Turing machine 
is, qualitatively, “the best machine in town.” It is a straightforward 
undergraduate exercise to show that extending the Turing machine 
by making the tape two-way infinite, or planar, adding multiple 
tapes, creating a random seek head, or adding nondeterminism, 
may increase the efficiency of the Turing machine, but these 
enhancements do not extend what can be computed. A variety of 
computing formalisms have come and gone – Markov Algorithms, 
RAMS – but all have been proven to be equivalent to Turing 
machines and also do not extend what can be computed. 
     To any reader of Turing’s paper on this subject, it should be 
clear that the Turing machine itself has no concept of “addition”, 
although it should also be clear that with a little work, one could 
write a set of rules for a Turing machine that would simulate 
addition. This may not be recognized as addition by a layperson, 
but it would be easy enough to create a mapping between the 
inputs and outputs that would be sound and complete with respect 
to addition. (We refer the interested reader who wishes to take the 
time to investigate how addition is implemented on a Turing 
Machine to go back to Levesque’s discussion of the Summation 
Room that uses a book that describes the addition algorithm, and 
consider whether an understanding of the corresponding Turing 
Machine means one understands addition, or whether the Turing 
Machine itself does.)  
      That aside, Turing was interested in the idea of machine 
intelligence, and proposed the Imitation Game as a way of testing 
intelligence without actually defining intelligence – a brilliant 
finesse of homunculus problems. 

3.1 The Gender Game 
Turing’s first description [14] of the Imitation Game involves a 
man, a woman, and an interrogator, who is in another room, and 
who must determine on the basis of text-based conversation which 
player is the man and which is the woman.  
      Some writers [5], call the Gender Game a ‘red herring’, but 
others [e.g., 2] see it as key to the argument. We agree with the 
latter view, because we believe the Gender Game suggests that the 
Turing Test intends to test a kind of intelligence that goes well 
beyond what might be produced by mechanical means. 
      Turing uses words along the lines of pretence and imitation, 
but, in light of Levesque’s arguments against the test, we offer the 
word impersonate – a human player must convincingly inhabit the 
gender of another person to a judge’s satisfaction, and furthermore, 
this illusion must be sustained for a reasonable length of time. We 
assume that there is no disagreement that sustaining such a 
convincing performance would require intelligence – whatever we 
believe that to be. 

3.2 The “Standard” Imitation Game 
Turing then asks, “What will happen when a machine takes the part 
of [the man] …?’ Will the interrogator decide wrongly as often 



when the game is played like this as he does when the game is 
played between a man and a woman?” 
      To put it into our terminology, will it be possible for a machine 
to impersonate a human – that is, convincingly inhabit the being of 
a person, to a judge’s satisfaction, and to sustain the illusion for a 
reasonable length of time? 
      Turing foresaw that this was a difficult problem. In the original 
paper, he stated, “I believe that in about fifty years' time it will be 
possible to programme computers … to make them play the 
imitation game so well that an average interrogator will not have 
more than 70 percent chance of making the right identification 
after five minutes of questioning”. It is less well known that in a 
1952 radio broadcast [15], he says, in response to a question from 
Max Newman, that it will be “at least 100 years” before a machine 
will, in Newman’s words, “stand any chance with no questions 
barred”. This is a significant revision and only underscores his 
insight into mechanical and human intelligence in an era when 
these concepts were barely understood. 
      Turing died only two years later. There are no further academic 
publications from him on this subject, and there appears to be no 
other historical record of him commenting, publicly, or privately, 
about this question again.  
      However, given the history of AI, and some of the other 
predictions made during its history, it should be added that 
Turing’s predictions were both remarkably conservative and 
remarkably prescient. The Turing Test has remained a cornerstone 
of artificial intelligence. 
 

4 LEVESQUE’S CRITIQUE OF TURING 
Around the centenary of Turing’s birth, Levesque made a strong 
case that the Turing Test was out of date. This was reported in the 
mainstream media at a time when The Imitation Game, a 
fictionalized biography of Turing’s later life, was a popular film. 
      According to Levesque [8,9], the Turing Test “has a serious 
problem: it relies too much on deception”. Levesque uses a good 
deal of loaded language. To wit: “a computer program passes the 
test iff it can fool an interrogator into thinking she is dealing with a 
person not a computer.” A program “will either have to be evasive 
… or manufacture some sort of false identity (and be prepared to 
lie convincingly).” “All other things being equal,” says Levesque, 
“we should much prefer a test that did not depend on chicanery of 
this sort”. “Is intelligence just a bag of tricks?” he asks. And so on. 
      We detect a whiff of moral disapproval. 
      The Turing Test undoubtedly involves deception, which we 
prefer to call impersonation, for the same reason it involves 
communication by text. Turing [15] explains: “The new problem 
has the advantage of drawing a fairly sharp line between the 
physical and the intellectual capacities of a man.” It’s the 
intellectual that interests us. “We do not wish to penalise the 
machine for its inability to shine in beauty competitions … The 
conditions of our game make these disabilities irrelevant”. 
      Similarly, questions that amount to asking whether a computer 
possesses physical attributes of humanness cannot be answered 
truthfully. If asked, “which tastes better: dark chocolate or milk 
chocolate?” a computer must give an answer consistent with an 
ability to taste. Anything else amounts to replying, “yes” to “are 
you a machine?”  

4.1 The Loebner Competition 
Levesque’s discussion of this “serious problem” [8,9] focuses on 
the kind of tactics seen in the Loebner competition, which is 
sometimes understood to be an initial attempt at conducting the 
[14] Turing Test. The Loebner chatterbots, he says, “rely heavily 
on wordplay, jokes, quotations, asides, emotional outbursts, points 
of order, and so on. Everything, it would appear, except clear and 
direct answers to questions!” 
      We don’t disagree that the Loebner chatterbots currently do not 
meet the vision of Turing, nor do we feel they satisfy the visions of 
serious researchers in Artificial Intelligence. Their tactics simply 
reflect the fact that, in the current state of the technology, the 
chatterbots are unable to sustain the illusion of humanity for 
terribly long. We are not alone: the scientific community has not 
accepted the winner of any Loebner Competition as having passed 
the Turing test. 
      Indeed, if this level of discourse were sufficient to pass the 
Turing Test, Eliza would have been deemed to have succeeded 
some decades ago.  
      To combat this “chicanery”, Levesque proposes an alternative 
to both the Loebner Competition and the Turing Test, that avoids 
the tomfoolery he attributes to the Loebner. Although the design of 
his test is carefully thought out, our concern is that it, at the same 
time, cuts the heart out of the Turing Test.  

5 LEVESQUE’S PROPOSED 
ALTERNATIVE 

Levesque’s proposed alternative to the Turing Test, the Winograd 
Schema Challenge (WSC), is a constructive one. The WSC is a 
highly streamlined and uniform multiple-choice exam that allows 
for a simple scoring mechanism.  
      Each question is an anaphoric disambiguation test [8] 
characterised by the inclusion of a special word that, when 
replaced by an alternate, flips the answer. In the example below, 
the special word is italicized and its alternate appears, likewise 
italicized, in parentheses:  
 
Question: The trophy would not fit in the brown suitcase because it 
was too big (small). What was too big (small)?  
    Answer 0: the trophy  
    Answer 1: the suitcase. 
 
    A WSC would consist of many problems similar to this, which 
could be answered on the equivalent of bubble answer sheets and 
marked lickety-split by machines. We concede that the examples 
provided by Levesque and Winograd are cunning, and that they 
appear to require real-world knowledge and reasoning to answer 
correctly. 
     But therein lurk the homunculi, and they are very difficult to 
spot. We begin by defining what we call the Watson Effect.  

5.1 The Watson Effect 
Earlier, we added the words “sustain” and “for a reasonable time” 
to take into account what we call the Watson effect. Readers may 
recall that IBM built a program called Watson, which was designed 
to play the TV game Jeopardy. (For those unfamiliar with this 
television program, it is a trivia game where contestants are given 



“answers” as “clues” in some category and they must reply with 
the question to which the clue is an answer. For example, a “clue” 
in the category Shakespeare might be “He called these a pair of 
star-crossed lovers”, to which the correct reply is “Who are Romeo 
and Juliet?” 
      In the televised competition between Watson and two human 
Jeopardy champions, Watson’s performance was almost 
enchanting until it was given, in the category U.S. Cities, the clue: 
"Its largest airport is named for a World War II hero, its second 
largest for a World War II battle," Watson answered “Toronto”. 
      To the North American audience, this was a hysterical blooper, 
as most of those viewers knew Toronto to be one of the largest 
cities in Canada, not the United States. However, to be fair to 
Watson, there are several explanations for this gaffe. Many people 
think of America as comprising all of North and South America. 
Alternately, because the Toronto Blue Jays baseball team is part of 
the American League, it may have tripped up. Finally, it turns out 
that 22 aircraft are based at the Eddie Dew Memorial Airpark 
located near Toronto, Ohio, USA, the second-largest city in 
Jefferson County. And so on. But we believe that for most people, 
Watson’s magic ended then, even though Watson went on to 
significantly defeat both human jeopardy champions. The same is 
true of voice recognition functions and almost all varieties of auto-
correct: there is a period for which they amaze, a point at which 
they goof, and, for some, a point at which they annoy. 
      In the case of Watson, this lone error was sufficient to dispel 
the illusion of true intelligence. Watson certainly didn’t lose the 
game – it won by a landslide. But in the judgment of the TV-
watching jury, Watson had failed.  
      For this reason, we have added to our rephrasing of the 
definition of the Turing Test, that the machine must sustain the 
illusion of human intelligence for a reasonable length of time. 

5.2 The WSC Homunculi 
We believe there may be more than one homunculus in the WSC as 
we understand it, but they seem to be chimeric. The most obvious 
homunculus is in the scoring mechanism, which we will deal with 
here. Levesque writes that “a random WS test can be constructed, 
administered, and graded in a fully automated way. An expert 
judge is not required to interpret the results.” 
      For one thing, we don’t believe Turing’s test required an expert 
judge. It required an ordinary person with no particular expertise in 
computers as a judge, a group of such persons, as a jury. 
      More critically, Levesque’s “fully automated grading 
mechanism” merely gives a grade, and cannot really decide 
intelligence the way Turing’s judge or jury would. It is therefore 
vulnerable to the Watson effect – a single error may ruin the 
illusion of intelligence, even though the machine scores well in the 
test. 
      Levesque himself observes at least two opposing pitfalls in the 
design of Winograd Schemas. The first are schemas that are too 
obvious. He gives the following example: 
 
Question: The women stopped taking the pills because they were 
pregnant (carcinogenic). Which individuals were pregnant 
(carcinogenic)? 
 Answer 0: The women. 
 Answer 1: The pills. 

      Levesque points out that there is a straightforward mechanism 
in anaphor resolution for sorting this out (selectional restrictions) 
because, barring far-fetched readings, only women can get 
pregnant and only pills can be carcinogenic. 
 
      The following illustrates the second pitfall: 
 
Question: Frank was jealous (pleased) when Bill said that he was 
the winner of the competition. Who was the winner? 
 Answer 1: Frank 

Answer 2: Bill 
 
      There are two possible interpretations of this question. If Frank 
and Bill are rivals, Frank would be jealous if Bill announced that 
Bill won the competition. If they were friends, it would be a 
different story. It is situations like this that make it impossible to 
write the instruction book for the Chinese room, and that make the 
Turing Test a meaningful challenge. The machine must be aware of 
all possible contexts, and in the case of the Turing Test, must have 
some smart way of disambiguating them – asking questions that 
clarify the context. In the case of the Chinese room, this would 
have been included in the instruction manual. In the case of the 
Turing Test, the machine would have to have the presence to ask a 
little about Frank and Bill to understand better why one might feel 
one way or another. But from what appears here, there is no clear 
correct answer. 
      In another side remark, Levesque proposes that the questions 
be designed so that an untrained subject (he suggests “your Aunt 
Edna”) could answer them all. This is a peculiar suggestion that we 
believe implies the existence of another homunculus in the 
argument. Is there really a universal Aunt Edna that all competitors 
will think like? 
      These examples, like many examples in the good old days of 
automated commonsense reasoning, look simple enough at first 
glance. But there is no clear line in the sand that divides the 
questions into those for which there is a dead easy answer, those 
which “your Aunt Edna” would find easy to answer, those which 
are sufficiently ambiguous to admit several plausible answers, and 
questions based on knowledge too narrow to expect anyone to 
know the answer to. But who decides which questions form part of 
the test? Aunt Edna? No matter how well this is done, some 
questions will, not by fault of the designers, fall into one or more of 
these categories. And how does the grading mechanism take into 
account the normal ambiguity of language in a way that measures 
the intelligence of the software and not just a raw score? 
      No matter how hard we try, questions will sneak into the test 
that reflect certain biases the “Aunt Ednas” being used to calibrate 
the test will introduce.  
      For Levesque’s grading mechanism to measure intelligence and 
replace the Turing Test, it must be capable of a kind of discernment 
that itself requires intelligence; to paraphrase Haugeland, we have 
presupposed the very intelligence we have proposed to test. 
      It is also possible for questions to be designed poorly. Perhaps, 
in the case of Watson, the question about American airports was 
such a poorly designed question. The history of human intelligence 
testing abounds with outrageous examples of poorly designed 
questions that, in some instances, pigeonholed unfortunate groups 
of people as lacking in intelligence and others as preternaturally 
intelligent. We cannot presuppose that this kind of mistake will not 
be made again. 



      This means that the exam along with the grading mechanism 
have a chimeric relationship. We might throw Aunt Edna into the 
mix, but we leave this discussion for future work. 
      This is not to say that the idea of Winograd Schemas are not 
ingenious or that the idea of a WSC is not excellent, or that nothing 
valuable is measured by Levesque’s fully automated grading 
system. What is necessary going forward is that we distinguish 
benchmarks from the judgment of intelligence. 
 

6 BENCHMARKS VERSUS 
INTELLIGENCE 

Over the years, various tasks (usually games) have been proposed 
as benchmarks for measuring machine intelligence: tic-tac-toe, 
sliding tile puzzles, chess, checkers, Jeopardy, Go, the Turing Test, 
the Loebner Competition, and now the Winograd Schema 
Challenge. 
      As recently as the 1990s, a brute force tic-tac-toe game 
implemented in Prolog ran out of stack space in the computers of 
that era. At that time, tic-tac-toe, along with sliding tile puzzles 
(aka 16-puzzles) formed a considerable part of the introductory AI 
curriculum.  

Of course, those days are long gone. There is probably little 
need to optimize search algorithms for a tic-tac-toe 
implementation. These, and also other far more complex games 
have fallen, one-by-one, to techniques largely based on massive 
knowledge bases and brute force searches and sophisticated 
statistical strategies.  

The difference between a benchmark and the Turing Test is 
that the former has a measurable performance in the formal 
scientific sense, whereas the latter transcends science – the 
machine must be perceived to “walk among us” in ways that resist 
quantification. 

Where does this leave the WSC? Does it replace the Turing Test, 
or is it another benchmark? 

The critical issue is scoring. If the WSC is to replace the Turing 
Test, the scoring mechanism must replace the human judge and 
decide which participants are playing intelligently, and which are 
not. If it just provides a score, it is a benchmark. 

Lastly, we remark that the Loebner competition is neither – it is a 
competition. The best effort wins the day, but doesn’t necessarily 
pass the test. 

 

7 HUMAN VALUES AND JUDGING 
INTELLIGENCE 

In one variation of the Imitation Game, Turing proposed judgment 
by a jury. This is apt because it links the idea of human values in 
artificial intelligence to the idea of human values in justice. 
      A Google search using the query ‘justice vs law’ yields some 
seventy million hits. For the present discussion, it seems reasonable 
to say that justice is a philosophical and/or moral concept with no 
agreed-upon universal definition, whereas the law is a set of rules 
(presumably) written by in-house government lawyers, and voted 
(agreed) upon by legislative bodies. Despite all efforts, significant 
disagreements arise about the interpretation of legislation amongst 
ordinary people, their lawyers, and many levels of courts.  
       

      As well, human values might change over time after the 
passage of a law. How this happens stretches our expertise, but it is 
interesting to consider the role juries play in this process. 
      The jury system is an ancient human innovation [1]. Some 
scholars date the origin of the modern jury to 1066, but some 
writers suggest that modern trial by jury would be “unnecessary 
and burdensome in a primitive state of society, when the family or 
clan was the social/political units, and laws were few and readily 
understood.”  
      Interestingly, there are at least two explanations of why juries 
exist [1]. Some say that juries of peers were introduced to temper 
the decisions of judges, in the same way the introduction of the 
House of Commons tempered decisions of the House of Lords.  
      The other theory, and the one that Burns argues should be 
central, might be characterized as saying that the idea of justice 
ultimately resides in the minds of humans. This gives juries the 
right to make decisions that are completely novel, and it also gives 
juries the right to make decisions that shift as community standards 
shift. 
      The jury system, like the Turing Test, has been subject to a 
variety of criticisms, many of them devastating. Yet in spite of our 
awareness of imperfections and abuses, most observers would not 
want to replace something of such value unless and until its fatal 
defects and the superiority of the proposed alternative were 
convincingly demonstrated. 
      Similarly, we view the evaluation of intelligence much as we 
view the evaluation of justice. Both concepts are difficult to define 
formally – because both transcend ordinary metrics – but are 
understood and judged by humans in a way that depends on many 
factors, including context.  

Thus, a philosophical phase transition might be said to occur 
when we move from benchmarks to human judgment. Benchmarks 
in artificial intelligence, such as winning a tournament, are by 
definition easy to define and to measure, but a successful outcome 
does not guarantee we have achieved intelligence. Similarly, no 
matter how long the law is debated and how carefully its language 
is constructed, there is no guarantee, for all worlds and times, that 
we have achieved justice. 

This brings us back to our earlier statement, where we stated 
that the Turing test transcends science. Let us be clear that we do 
not intend to enter the realm of the supernatural when we say this; 
it is only that in the Knowledge Representation community, it is 
appropriate to think of science in terms of the formal logical 
frameworks articulated, for example, by Kyburg [3]. But consensus 
on what science is has not been achieved there either – there are 
also frameworks going back to Popper and Quine, and many 
variations since. 

8  CONCLUSIONS 
Levesque has given a strong argument regarding perceived 
weaknesses within the Turing test; in particular, he objects to the 
use of “deception” (impersonation) and the free form of the test, 
which allows contestants to dodge meaningful challenges by 
changing the topic, or pretending not to understand. He provides a 
constructive alternative, the Winograd Schema Challenge, which 
forces the computer to give a direct answer. Moreover, once 
constructed, this eliminates the need for human judgment.  
      We counter by saying that this is equivalent to saying there is a 
computer program that can decide whether an entity is intelligent 



or not: a regression or homunculus argument. Alternately, it 
replaces the Turing test, wherein a computer and human “share 
thoughts” in the judgment of another human, with another 
benchmark/milestone to pass. 
       This research was supported by funding from the University of 
Saskatchewan. 
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