
COIN ++ @ ECAI

For ECAI 2016, COIN merged with NorMAS to become COIN++.

COIN@ECAI 2016

The emergence of open socio-technical systems raises a range of challenges and opportunities for
research and technological development in the area of autonomous agents and multi-agent systems. In
particular, human expectations about software behaviour - justified or not - significantly affect the
evolution of human attitudes towards, acceptability of and creation of trust in such systems.
Consequently, mechanisms that transmit representations of human values and how software can make
decisions that respect them, are potentially significant for the effective design and construction of mixed
human/software open systems.

Coordination, organizations, institutions and norms are four key governance elements for such systems,
and the COIN workshops constitute a space for debate and exploration of these four elements in the
design and use of open systems.

We seek to attract high-quality papers and an active audience to debate mathematical, logical,
computational, methodological, implementational, philosophical and pragmatic issues related to the
four aspects of COIN.

Of particular interest for the workshop are those papers that articulate a challenging or innovative
view.

COIN is ranked B on the CORE Conference Ranking list: http://portal.core.edu.au/conf-
ranks/2160/

Workshop chairs

Julian Padget (University of Bath, United Kingdom), j.a.padget@bath.ac.uk
Ana Paula Rocha (University of Porto, Portugal), arocha@fe.up.pt

NorMAS

Norms are crucial for studying both human social behaviour and for developing distributed software
applications. The term norms is deliberately ambiguous. We study and apply norms in the sense of being
normal (conventions, practice), and in the sense of rules and regulations (obligations, permisions).

Normative systems are complex systems in which norms play a crucial role or which need normative
concepts in order to describe or specify their behaviour. A normative multi-agent system combines
models for normative systems (dealing for example with conventions, or obligations) with models for
multi-agent systems (dealing with coordination between individual agents).

http://portal.core.edu.au/conf-ranks/2160/
http://portal.core.edu.au/conf-ranks/2160/

Norms have been proposed in multi-agent systems and computer science to deal with issues of
coordination, security, electronic commerce, electronic institutions and agent organization. They have
been fruitfully applied to develop simulation models for the social sciences. However, due to the lack of
a unified theory, many researchers are presently developing their own ad hoc concepts and applications.

The aim of this workshop is to stimulate interdisciplinary research on normative concepts and their
application.

 Workshop Chairs

Joris Hulstijn (Delft University of Technology, the Netherlands), j.hulstijn@tudelft.nl

Gabriella Pigozzi (Université Paris Dauphine, France), gabriella.pigozzi@dauphine.fr

Harko Verhagen (Stockholm University, Sweden), verhagen@dsv.su.se

Serena Villata (I3S Laboratory, CNRS, France), villata@i3s.unice.fr

COIN ++ @ ECAI 2016 schedule

9.30 – 10.30 Keynote Ibo van der Poel

10.30 – 11.00 Break

11:00 - 13:00 Session 1

A manifesto for conscientious design of hybrid online social systems - Pablo Noriega, Harko Verhagen,
Mark d'Inverno and Julian Padget

The Role of Values - Klara Pigmans, Huib Aldewereld, Neelke Doorn and Virginia Dignum

Habit formation and breaking: a support agent design as an extended mind - Pietro Pasotti, Birna M. van
Riemsdijk and Catholijn M. Jonker *

"How Did They Know?" - Model-Checking for Analysis of Information Leakage in Social Networks Louise
Dennis, Marija Slavkovik and Michael Fisher

13:00 – 14:00 Lunch

14.00 - 15.30 Session 2

Monitoring Opportunism in Multi-Agent Systems - Jieting Luo, John-Jules Meyer and Max Knobbout

Sanction recognition: A simulation model of extended normative reasoning - Martin Neumann and Ulf
Lotzmann *

An Architecture for the Legal Systems of Compliance-Critical Agent Societies - Antonio Carlos Rocha
Costa *

15.30 – 16.00 Break

16.00 - 17.30 Session 3

Towards a Distributed Data-Sharing Economy - Samuel Cauvin, Martin Kollingbaum, Derek Sleeman and
Wamberto Vasconcelos

Modelling patient-centric Healthcare using Socially Intelligent Systems: the AVICENA experience - Ignasi
Gomez-Sebastian, Javier Vazquez, Frank Dignum and Ulises Cortes

Using Petri Net Plans for Modeling UAV-UGV Cooperative Landing - Andrea Bertolaso, Masoume M.
Raeissi, Alessandro Farinelli and Riccardo Muradore

17.30 - 18.30 Round table: future of COIN/NorMAS

* denotes NorMAS papers

A manifesto for conscientious design of hybrid online
social systems

Pablo Noriega1, Harko Verhagen2, Mark d’Inverno3, and Julian Padget4

1 IIIA-CSIC, Barcelona, Spain pablo@iiia.csic.es
2 Stockholm University. Stockholm, Sweden

verhagen@dsv.su.se
3 Goldsmiths, University of London, London, UK

dinverno@gold.ac.uk
4 Department of Computer Science, University of Bath, Bath, UK

j.a.padget@bath.ac.uk

Abstract. Online Social Systems such as community forums, social media, e-
commerce and gaming are having an increasingly significant impact on our lives.
They affect the way we accomplish all sorts of collective activities, the way we
relate to others, and the way we construct are own self-image. These systems
often have both human and artificial agency creating what we call online hybrid
social systems. However, when systems are designed and constructed, the psy-
chological and sociological impact of such systems on individuals and commu-
nities is not always worked out in advance. We see this as a significant challenge
for which coordination, organisations, institutions and norms are core resources
and we would like to make a call to arms researchers in these topics to subscribe
a conscientious approach to that challenge.
In this paper we identify a class of design issues that need attention when de-
signing hybrid online social systems and propose to address those problems us-
ing conscientious design which is underpinned by ethical and social values. We
present an austere framework to articulate those notions and illustrate these ideas
with an example. We also outline five lines of research that we see worth pursu-
ing.

1 Introduction

We are witnessing major social changes caused by the massive adoption of online social
systems that involve human users alongside artificial software entities. These hybrid
online social systems promise to satisfy and augment our social needs and the rise
of such systems and their use are nothing short of spectacular. Because of the speed
of their uptake their has been limited research that looks at the relationship between
system design and potential long-term psychological, sociological, cultural or political
effects.

Examples of the undesirable consequences of such systems (with varying degrees
of autonomous agency participation) include:

– the increasing importance of social media expressions and reactions in building and
maintaining identity,

– the possibility of determining personal data from facial recognition applications
such as FindFace,

– the possibility of determining personal information via automatic scrubbing of on-
line dating services such as OKCupid,

– the everchanging algorithm for presenting messages on Facebook, outside of the
control of the user

The social impact of these applications is magnified by the accessibility of mobile de-
vices, ubiquitous computing and powerful software paradigms that enable innovations
in AI to be readily integrated. Despite this, design takes place in an ad-hoc and opaque
way so that the social consequences of online actions are unknown. The effect of online
actions in the real social world is often not understood, we often do not know whether
actions are private or public, we cannot be sure of the way in which the actions of oth-
ers is presented to us, and nor do we know how information about our activity is being
used.

As the AI community plays a key role as inventors and builders of the scientific and
technological enablers of this phenomenon, we have a moral responsibility to address
these issues that requires a sustained, long term commitment from our community. We
believe that what is needed is a collective interdisciplinary endeavour across design,
sociology, formal methods, interface design, psychology, cultural theory, ethics, and
politics to develop a clearer understanding of how we approch and design online social
systems. Together we can play an active role in the design of systems where users’ un-
derstanding of actions, relationships and data is fair and clear. The challenge is great, but
then so is the responsibility. Those of us working in the theory, design and implementa-
tion of agent-based systems now have a fantastic opportunity to apply our methods and
tools in ways which could have impact far beyond that we might have imagined even a
few years ago.

This paper then is a call to arms for such an initiative, specifically to the COIN
community, in the spirit of the “Research Priorities for Robust and Beneficial Artificial
Intelligence: an Open Letter”. We articulate our proposal around the notion of consci-
entious design as a threefold commitment to a design that is responsible, thorough and
mindful.5.

Conscientious design starts by developing an awareness of the concerns manifest
in the current landscape, and understanding how multi-agent techniques can be applied
as an effective means to operationalise systems to ameliorate such concerns, and bring
it to bear upon our everyday scientific and technological activity. For this we need to
(further) develop theories and models of norms, roles, relationships, languages, archi-
tectures, governance and institutions for such systems, and do so in a way that naturally
lends itself to interdisciplinary research. We need to be empiricists (in applying our
techniques to modelling current systems), theorists (in building implementable models
of hybrid social systems), and designers (in designing systems); open to working in a
strong interdisciplinary way across arts, humanities and social sciences. We may also
need to break away from our natural comfort zones describing idealised scenarios for

5 http://futureoflife.org/static/data/documents/research_
priorities.pdf

2

http://futureoflife.org/static/data/documents/research_priorities.pdf
http://futureoflife.org/static/data/documents/research_priorities.pdf

agents but we can do so when we recognise just how potentially significant the impact
of our research can be.

In this paper we postulate the need to address this challenge, propose a focus of
attention —Hybrid Online Social Systems (HOSS)— and give a rough outline of what
we see as the main research questions. The paper is structured as follows: In Sec. 2
we point to some background references so as to motivate our election of problematic
aspects of HOSS and our proposal of conscientious design, addressed in Sec. 3. In Sec. 4
we propose the core ideas —based on the WIT framework [15]— to make conscientious
design operational and in Sec. 5 we illustrate these ideas with an example. All these
elements are then put together as a research programme towards conscientious design
and implementation of HOSS.

2 Background

2.1 The problem

The range of behaviours that we can carry out online make available all kinds of activity
that was not possible even a few years ago. It can affect how we see ourselves, how we
choose to communicate, how we value notions of privacy and intimacy, and how we
see our value in the world. We are building new metaphors of ourselves while we are in
contact with everyone and everybody [9]. The issue that is overlooked by many users
is that almost anything that can happen in the real social world —i.e. the one which
existed before online systems— can potentially happen in any online one, and worse.
We are facing a “Collingridge dilemma”: We do not yet know how to take advantage
of the opportunities of this technology and avoid its unwanted consequences but we are
justifiably concerned that by the time we understand its side-effects it may be too late
to control them [6].

2.2 An approach to the solution

We concern ourselves with those systems where there is artificial agency; either because
there are software socio-cognitive agents that have some autonomy or because the sys-
tem infrastructure incorporates agency (such as by actively producing outcomes that are
not the ones users expect, or because third parties may interact with that system without
the system or its users being aware or intending it to happen). For these “hybrid online
social systems”, or HOSS, we identify the generic type of features we find problematic
and propose a “conscientious” design approach in response.

Our proposal is in tune with the Onlife Manifesto [9] and thus aims to respond to
the sensitivities and challenges captured in that document. For instance, a new under-
standing of values, new uses of norms and the new guises that their enforcement should
take; attention to how values like trust, fairness, solidarity are understood; give users
control over the way their own values may become incorporated in the tools they create
or adopt. Our proposal can be framed as a part of the “value alignment problem”.6

6 Stuart Russell:“... The right response [to AI’s threat] seems to be to change the goals of the
field itself; instead of pure intelligence, we need to build intelligence that is provably aligned
with human values...”. https://www.fhi.ox.ac.uk/edge-article/

3

https://www.fhi.ox.ac.uk/edge-article/

Our proposal is akin to the Value-sensitive design (VSD) research framework [10]
and similar approaches like Values in Design [13] and disclosive computer ethics [3].
The main concern in VSD is how values are immersed (mostly unconsciously) in tech-
nological artifacts, and postulate that what is usually missing during the design and
development phases is a critical reflection upon this unconscious inscription of values.
We advocate a conscientious approach to put in practice that critical reflection.

VSD offers three “investigation” schemata for inscribing values into the design of
systems (i) conceptual-philosophical whose aim is to identify relevant values, and rele-
vant direct and indirect stakeholders (not only users), (ii) empirical the use of qualitative
and quantitative research methods from the humanities and social sciences, to study how
people understand and apply values, and (iii) technical to determine the role that values
play in technologies and how to implement those values identified in the two previous
schemata into the systems that are being designed.

We propose a narrower but complementary strategy. We propose to focus attention
in those values that are associated with three broad areas of concern that we believe are
encompassed by conscientiousness: thoroughness (the sound implementation of what
the system is intended to do), mindfulness (those aspects that affect the individual users,
and stakeholders) and responsibility (the values that affect others). We postulate an
approach to software engineering that is directed towards a particular class of systems
(HOSS). It is an approach close to VSD because it rests on a particular categorisation of
values but we go further because we understand that those values are instrumented by
means of institutional (normative) prescriptions that have an empirical and conceptual
grounding, and then implemented through technological artifacts that have a formal
grounding. Consequently, while from a teleological point of view we see our approach
closer to the ideas of value-sensitive-design, from a technological and methodological
point of view, the domain and the proposal are clearly within the COIN agenda.

2.3 The Role of COIN

We believe there is a critical need for a science and discipline of conscientious design
for online hybrid social systems which contain human and computational entities. Some
of the questions that present themselves to our community are given below.

– How can the agent/AI community collectively recognise this opportunity and spring
into action to take part in the development of a science of hybrid online social
systems (HOSS) that can lead to their principled design?

– How can we build models, tools, methods and abstractions that come from our own
specialities across agent design, interaction protocols, organisations, norms, insti-
tutions and governance to underpin the principled design of software incorporating
human and artificial agents?

– How can we encourage and support a greater degree of responsibility in the design
of online environments in exactly the same way as an urban planner would feel
when designing a new locale?

This is not an easy task as the domain is such a diverse and complex oneThis is nec-
essarily an early foray into setting up the challenges of charting this space and defining

4

some of the challenges we face in order to do so and doing so in way in which we
can build bridges to other communities. Naturally, we want any undertaking to be wide
ranging, to be inclusive so that people from all fields of the agent and AI communities
can take part, and where groups from other parties can join with a clear sense of what
we mean by a science of online social systems. Studies from other disciplines often lead
to important critiques of technological development, what our community can uniquely
provide is a scientific framework for system design that can both critique current sys-
tems but also enable a collective design of future conscientious systems. We will all lose
out if there cannot be a collective and interdisciplinary approach to understanding how
to design such systems. We need a common technological and scientific framework and
language to argue for how we should design the next generation of such systems.

3 Choice of problems and approach: conscientious design of
HOSS

The first challenge we propose to address is to develop a precise characterisation of
HOSS. As suggested in [5], this can be approached in two directions. First a bottom-
up task that consists of studying existing HOSS to identify their essential features
and typologies. For each typology we suspect there will be particular ways in which
desired properties may be achieved. The task would be to elucidate how values like
transparency, accountability, neutrality, and properties like hidden agency and such are
achieved in the actual systems and look for those design and implementation resources
that tell the degree to which those properties exist. Secondly, top-down research would
aim to approximate agent-based abstract definitions of ideal classes of HOSS and grad-
ually make them precise in order to analytically characterise the features and properties
of the HOSS we design and build.

Far the moment we will speak of HOSS in not-formal terms from the top-down
perspective. Loosely speaking, HOSS are IT enabled systems that support collective
activities which involve individuals —human or artificial— that reason about social
aspects and which can act within a stable shared social space.7

This is a tentative “analytic” definition of HOSS (from [15]):

Notion 1 A Hybrid online social ssytem (HOSS) is a multiagent system that satisfies
the following assumptions:

A.1 System A socio-cognitive technical system is composed by two (“first class”) enti-
ties: a social space and the agents who act within that space. The system exists in
the real world and there is a boundary that determines what is inside the system
and what is out.

A.2 Agents Agents are entities who are capable of acting within the social space. They
exhibit the following characteristics:

7 Such systems have been labelled “socio-technical” [20], socio-cognitive technical systems [4],
intelligent socio-technical systems [12] and we called them socio-cognitive technical systems
in [15].

5

A.2.1 Socio-cognitive Agents are presumed to base their actions on some inter-
nal decision model. The decision-making behaviour of agents, in principle,
takes into account social aspects because the actions of agents may be af-
fected by the social space or other agents and may affect other agents and
the space itself [4].

A.2.2 Opaque The system, in principle, has no access to the decision-making
models, or internal states of participating agents.

A.2.3 Hybrid Agents may be human or software entities (we shall call them all
“agents” or “participants” where it is not necessary to distinguish).

A.2.4 Heterogeneous Agents may have different decision models, different moti-
vations and respond to different principals.

A.2.5 Autonomous Agents are not necessarily competent or benevolent, hence
they may fail to act as expected or demanded of them.

A.3 Persistence The social space may change either as effect of the actions of the
participants, or as effect of events that are caused (or admitted) by the system.

A.4 Perceivable All interactions within the shared social space are mediated by tech-
nological artefacts — that is, as far as the system is concerned there are no direct
interactions between agents outside the system and only those actions that are me-
diated by a technological artefact that is part of the system may have effects in the
system — and although they might be described in terms of the five senses, they
can collectively be considered percepts.

A.5 Openness Agents may enter and leave the social space and a priori, it is not known
(by the system or other agents) which agents may be active at a given time, nor
whether new agents will join at some point or not.

A.6 Constrained In order to coordinate actions, the space includes (and governs) reg-
ulations, obligations, norms or conventions that agents are in principle supposed
to follow.

3.1 Our focus of attention: Hidden agency

The main problems with HOSS are what for a lack of a better term we’ll call “unaware-
ness problems” such as hidden agency, insufficient stakeholder empowerment, and lack
of social empathy.

Perhaps more than anything, we need to draw out the extent to which these systems
have or may acquire hidden agency. We mean, those side-effects or functionalities of
the system that are exploitable by its owner or others without the user being fully aware
of them, even if they were unintended by the designer of the system. In the language of
multi-agent systems from 25 years ago, there is an assumption that the agency of online
systems is benevolent [11] but if the hidden agency was revealed to users it would often
be entirely unwelcome and unwanted. And in the same language, we may see hidden
agency as hidden limits to the autonomy of the user.

An example of hidden agency is the recent case of mining on OKCupid where a
group of researchers not only mined the data of the online dating service but even put
the data collection of 70,000 users online on the Open Science Framework for any-
one to use. Although real names were not included, the data of personal and intimate
character could easily be linked to find the real identity behind the user names. Even

6

more so, if it would be connected via the profile pictures (which the researchers left
out of the database due to space reasons, not ethical considerations) to other social
media when using software such as Facefind (http://www.findbyface.com/) and Find-
face (http://www.findface.ru) Although OKCupid managed to have the data removed
on copyright violations, in what way the users had an opinion on or say in this is very
unclear (a case of insufficient stakeholder empowerment).

A case of lack of social empathy is how the use of Facebook for memorial pages
may have distressing effects [17]. Large turn-ups at funerals offer comfort and support
to those who have lost a loved one. The same effect also applies to online shows of
mourning such as the deluge of messages posted when a famous person dies. They
show up in the trending topics bar on Facebook, spreading the news fast. Even for less
famous persons, Facebook is playing a role in the mourning process. Facebook pages
are kept alive, messages are sent to the deceased and memorial pages are put online.
But not all is good. Just as a low turn-up at a funeral will cast doubt on the legitimacy
of ones sorrow so is the failure of attention in Facebook creating doubts. Moreover, the
turn-up at a funeral is a private observation limited in time and space whereas Facebook
measures and shows it all. The number of visitors can be compared to the number of
likes or other emojis and the number of comments, for all to see.

3.2 What we mean by conscientious design

We will go beyond value-sensitive design towards conscientious design and develop-
ment. As we mentioned in Sec. 2, we propose to look into a particular set of values
—involving technical, individual and social domains— that are linked to the descrip-
tion, specification, implementation and evolution of HOSS. Thus conscientious design
and developent of HOSS responds to three properties:

1. Thoroughness. This is achieved when the system is technically correct, require-
ments have been properly identified and faithfully implemented. This entails the
use of appropriate formalisms, accurate modelling and proper use of tools.

2. Mindfulness. This describes supra-functional features that provide the users with
awareness of the characteristics of the system and the possibility of selecting a
satisfactory tailoring to individual needs or preferences. Thus, features that should
be accounted for should include ergonomics, governance, coherence of purpose
and means, identification of side-effects, no hidden agency, and the avoidance of
unnecessary affordances.

3. Responsibility. This is true both towards users and to society in general. It requires
a proper empowerment of the principals to honour commitments and responsive-
ness to stakeholders legitimate interests. Hence, features like its scrutability, trans-
parency and accountability alongside a proper support of privacy, a “right to for-
get”; proper handling of identity and ownership, attention to liabilities and proper
risk allocation, and support of values like justice, fairness and trustworthiness.

It is here the agent metaphor for system design provides a clear opportunity for
providing models that can be understood by academics, users and designers of HOSS.
For the commercial-driven applications we might think of designing conscientiousness

7

sensors, small apps that show warning flags when the online application in use collides
with the values of the user. But in the remainder of the paper we will look at applications
developed in a conscientious way and illustrate the points we wish to make by revisiting
applications developed by or close to us.

4 An abstract understanding of HOSS

In order to design HOSS using a conscientious approach we need to come up with a
clear characterisation of these systems. Eventually, we should be able to articulate a set
of features that discriminate the online social systems that we are interested in — the
ones with “unawareness problems” we mentioned — from other online social systems.
In our research programme we propose to take a twofold approach for this task: an
empirical, bottom-up line that starts from paradigmatic examples and a top-down line
that provides an abstract characterisation. We already took a first step along this second
line with the WIT framework proposal that we summarise here.8

We start from the observation that HOSS are systems where one needs to govern
the interaction of agents that are situated in a physical or artificial world by means
of technological artifacts. The key notion is “governance” because in order to avoid
hidden agency and other unawareness problems we need to control on one hand, the
frontier between the system itself and the rest of the world and, on the other, the activity
of complex individuals that are at the root of HOSS. In order to elucidate how such
governance is achieved we proposed the following tripartite view of HOSS (Fig. 1):

View 1: An institutional system, I, that prescribes the system behaviour.
View 2: The technological artifacts, T , that implement a system that enables users to

accomplish collective actions in the real world (W), according to the rules set
out in I.

View 3: The system as it exists in the world, W , as the agents (both human and soft-
ware) see it and with the events and facts that are relevant to it.

In other words, W may be understood as the “organisation” that is supported by an
“online system” T that implements the “institutional conventions” I.

Notice that we are referring to one single system but it is useful to regard it from
these three perspectives because each has its own concerns. Notice also, these three
perspectives need to be cohesive or “coherent” in a very particular way: at any given
time t, there is a state of the system st that is exactly the same for all agents that are
in the system, and when an agent interacts with the system (in W), that state of the
system changes into a new state s′t, which is again common to all agents, if and when
the agent’s action is processed by the system (in T) according to the specifications of
the system (in I).

In order to make this cohesion operational, we define three binary relations between
the views. As sketched in Fig. 1, the institutional world corresponds with the real world
by some sort of a “counts-as” relationship [19] —and a mapping between entities in

8 See [15] for a more leisurely discussion of the WIT proposal.

8

I

TW

CO
RR
ES
PO
ND
S IMPLEMENTS

ENABLES

HOSS

Fig. 1. The WIT trinity: The ideal system, I; the technological artifacts that implement it, T , and
the actual world where the system is used, W .

W and entities in I— by which relevant (brute) facts and (brute) actions in W corre-
spond to institutional facts and actions in I (and brute facts or actions have effects only
when they satisfy the institutional conventions and the other way around). Secondly, I
specifies the behaviour of the system and is implemented in T . Finally, T enables the
system in W by controlling all inputs that produce changes of the state and all outputs
that reveal those changes.

It should be obvious that HOSS are not static objects. Usually, each HOSS has a
lifecycle where the process of evolution is not all that simple [5].

4.1 A WIT understanding of conscientious design

Conscientious design adds meaning to the WIT description by throwing light upon cer-
tain requirements that the three binary relations should satisfy. Thus, in the first phase of
the cycle, the main concern is to make the design value-aware from the very beginning,
in line with the recommendations of value-sensitive-design. That is, analyse systemat-
ically the thoroughness, mindfulness and responsibility qualifications of the system, so
those ethical, social and utilitarian values that are significant for the stakeholders are
made explicit. This examination would then pursue a proper operationalisation of the
intended values so that they may be properly translated into institutional conventions.
Note that it is in this phase where mindfulness and responsibility analysis of require-
ments are more present, while thoroughness is the focus of the next stage.

As suggested in [15], the operationalisation of those values together with the usual
software engineering elements (functionalities, protocols, data requirements, etc.) should
be properly modelled (in I) and then turned into a specification that is implemented in
T . The passage from the elicitation of requirements to the modelling of the system is fa-
cilitated by the availability of metamodels [1] that provide the affordances to represent
correctly those requirements. Ideally, such representatio should satisfy three criteria:
they should be expressive, they should be formally sound and it should become exe-
cutable. The metamodel should also provide affordances to model the evolution of the
system. Note that when relying on a “metamodel”, its expressiveness will bias the way
conscientiousness is reflected in the eventual specification.

9

The running system requires components for validation of the functionalities of the
system, for monitoring performance and the devices to control transfer of information
into and out of the system. These validation and monitoring devices should be tuned
to the conscientious design decisions and therefore reveal how appropriate is the im-
plementation of the system with respect to conscientious values and where risks or
potential failures may appear.

5 How to achieve conscientious compliance

The abstract WIT and cosnscientious design ideas take rather concrete forms when
building new HOSS.

5.1 An example of conscientious design, the uHelp app

Picture a community of monoparental families that decide to provide mutual support in
everyday activities: baby-sitting, picking up children from school, go shopping, substi-
tute at work during an emergency, lending each other things like strollers, a blender. One
may conceive an app that facilitates such coordination. But —sensitive to conscientious
design— one wants to make sure that coordination is in accordance with the values of
the community. In this case, for example, solidarity: everyone helps each other for free;
reciprocity: no free riding; involvement: old people may want to help; safety: no one
without proper credentials should be able to pick up a child; privacy (no revelation of
personal data, of behaviour of members of the network); trust: you demand more trust-
worthiness in some tasks than others and trust is a binary relation that changes with
experience.

You program the app so that it reflects those values faithfully and effectively. More-
over, you want the community to be aware of the degree of compliance/usefulness of the
network, and that the community may change the specification to improve it or adapt
to new preferences or values. Also you want the app to be unobtrusive, reliable, prac-
tical (light-weight, easy to download, easy to support, easy to update), and not contain
hidden agency.

Abstracting away from the actual specification, the main conscientious-compliance
features that the app should have are:

1. From a practical perspective: (i) Useful for the relevant coordination tasks, (ii)
Faithful and responsive to the community’s goals, preferences and values, (iii) Have
the community in control of evolution (iv) No hidden agency.

2. From an institutional perspective: (i) shared ontology, (ii) common interaction
model and interaction conventions (the smartphone app), (iii) govern a core coor-
dination process: values, norms, governance (iv) controlled evolution: participatory,
reliable, effective, (v) no unwanted behaviour.

3. From a technical perspective: (i) proper monitoring (key performing indicators, his-
torical logs), (ii) automated updating (iii) robust and resilient app. (iv) Safe against
intrusions and “zero information transfer” (only the intended information is admit-
ted into the system and only intended information is revealed).

10

This type of application and the conscientious-design perspective have been under
development in the IIIA for some time [16], and there is a working prototype, uHelp,
that implements these ideas in a smartphone app and has already undergone field tests
with actual users [14].

Where in WIT is conscientiousness
This example also serves to illustrate how conscientious design considerations may

be reflected in the WIT cycle:

Community
Interactions

Norms Formalised
Norms

Software

Birth of Norms:
community members

collectively decide
on their norms

Automated
Formalisation of Norms:

norms are translated from natural
language to a formal specification

Automated
Operationalisation of Norms:

software is modified
to incorporate the norms

Automated
Enforcement of Norms:

software ensures community
interactions follow the norms

!

"

#

$

Fig. 2. Life-cycle of norms in the uHelp app from [16]

For specification: The UHelp app exists as a smartphone-based social network in
W . It involves two realms: The first one consists of the physical components of the sys-
tem, which includes smartphones, addresses, schools, ID cards, blenders and strollers,
as well as the organisation of parents that own the application and the group of techni-
cians that support is everyday use and maintenance. The other is the activities that are
coordinated with the app (picking children up, help with shopping) and the activities
that are needed to use the app (running a server, uploading the app in iTunes). Thus in
order to describe (in I) how it should work, WIT would need an expressive description
language that should include coordination conventions, values, norms, and so on. In
other words, a description language that can handle mindful and responsible values. On
the other hand, the specification should be such that users are comfortable with the con-
ventions that govern the system and its evolution; and in this respect, the system needs
to be thorough.

For formalisation: Description needs to be made precise: How are values associated
with norms? Does the system support norm changes with some formal mechanism?
Is simulation the appropriate tool for validation and monitoring? In our case, UHelp
is intended to have a development workbench that uses electronic institutions coordi-
nation and governance affordances (an EI-like metamodel [8]) that is being extended
to handle values. Furthermore, the UHelp workbench shall contain also an argumenta-
tion environment for arguing about normative changes (to empower stakeholders) and a
simulation module to test and anticipate (responsibly) potential changes of the system.

11

For implementation: One would like to rely on technological artifacts that make
a thorough implementation of the specification of the system. Those artifacts may in-
clude devices like model checking, agent-mediated argumentation, agent-based mod-
elling and simulation. In particular, the uHelp workbench shall be coupled with a plat-
form that deals with the implementation of the functionalities of the value-based social
network and also with the implementation and maintenance of the app itself.

What does it mean to be conscientious in the uHelp app?
This is a sketch of an answer for a uHelp-like HOSS.
Thorough: For specification purposes, a metamodel that affords proper representa-

tion, sound formalisation, correct implementation of: (i) Coordination and governance
(activities, communication, social structure, data models, procedural norms, enforce-
ment, etc.) (ii) Values, (ontology, norms, inference) (iii) Monitoring (KPI, use logs)
(iii) Evolution (automated or participatory updating, validation).

Mindful: Proper elicitation and operationalisation of values, preferences and goals,
sensible selection of functionalities; lucid assessment of performance; explicit stake-
holders entitlements and responsibilities; sensible attention to usability and culturally
sensitive issues; due attention to privacy. What agency is afforded by the system?

Responsible: (i) Clear and explicit commitments about information transfer in the
system, uses of performance data, and about management of the system. (ii) Clear re-
quirements and commitments of system updating: what may users do; what type of
guarantees and requirements are part of the evolution process. (iii) Proper description
of coordination behaviour (requirements and outcomes for intended behaviour of auto-
mated activities and support functionalities). (iv) Explicit description about ownership
of the system, about relationship with third-party software and about commercial and
other commitments with third parties.

5.2 Three roads to application:

Rather than Quixotic fighting of Facebook windmills and trying to make existing HOSS
conscientious-compliant we identify three lines of attack: (i) Conscientiousness by de-
sign, like the uHelp example; (ii) methods and devices to test the extent to which
an existing HOSS is conscientious-compliant. This includes means to determine an-
alytically whether a given HOSS has problems like hidden agency, insufficient user
empowerment, inadequate social empathy; and (iii) plug-ins that may provide some
conscientious-compliant features to existing HOSS.

6 Towards a new Research Programme

In order to support conscientious design, we propose a research programme (based on
[15]) around the following five topics (see Fig. 3):

1. Empirical foundations: Conscientious design intends to build systems that sup-
port expected values and avoid unwanted features and outcomes. As we have been argu-
ing in previous sections, we find that a systematic examination of actual socio-technical
systems and of the values and unwanted outcomes involved need to be at the root of

12

Conscientious Design

Conscientious Implementation

2.1a Socio-cognitive agents1.EMPIRICAL FOUNDATIONS

2. MODELLING

3.TECHNOLOGICAL ARTEFACTS

4. EMPIRICAL STUDY

5. METHODOLOGIES

2.1b Social space

2.2 Affordances and description languages

2.3 Design Workbench

Specification languages

Tools

Platform

Environment

Fig. 3. The main challenges in the development of a framework for conscientious design of hybrid
online social systems.

formal, technological and methodological developments in conscientious design. The
outcomes should be, on one hand, a proper characterisation of HOSS and, on the other,
a proper operationalisation of problematic manifestations in HOSS and the preventive
and remedial features based on design conscientiousness.

2. Modelling: Conscientious design means: (i) that the creation of each HOSS be
founded on a precise description of what the system is intended to be; (ii) that such
description be faithfully implemented; and (iii) that the implementation actually works
the way it is intended to work. In fact, it would be ideal if one could state with con-
fidence the actual properties —scalability, accuracy, no unwanted side-effects, etc.—
that the working HOSS has, because either we design the system with those properties
in mind or because we are able to predicate them of an existing HOSS or an existing
HOSS supplemented with ad-hoc plug-ins.

We propose to split the problem of conscientious modelling in three main parts:
(2.1) Separate the design of a HOSS in two distinct concerns (the design of socio-
cognitive agents and the design of a social space); (2.2) develop high-level description
languages; and (2.3) develop a “design workbench” that provides concrete modelling
components that translated the description of a HOSS into a specification.

2.1.(a) Socio-cognitive agents. First it is important to provide a conceptual analysis
of the types of agents that may participate in a HOSS. The significant challenge is to
create agent models that exhibit true socio-cognitive capabilities Next to it is the chal-
lenge of developing the technological means to implement them; hence the definition
of agent architectures using a formal and precise set of agent specification languages
with the corresponding deployment and testing tools.

2.1.(b) The social space. In addition one has to provide a sufficiently rich under-
standing of the social spaces which are constituted in HOSS. What are the relationships,
what are the norms, how can it evolve, and a clarity about how this space is related to
the external world. Any model would also need to consider how several HOSS may co-
exist in a shared social space. Features that need to be included are openness, regulation,
governance, local contexts of interaction, organisational and institutional structures.

2.2. Affordances and description languages. We need to identify the affordances
that are needed, both, to achieve conscientious design in general, and also to support a
thorough implementation of particular HOSS (as illustrated in Sec. 5). In other words,
what are the concepts, analogies and expressions that a social scientist, an urban plan-

13

ner, a game designer or a sociologist may find more suitable to model agents and social
space of a HOSS. In practice, a description language for modelling agents should afford
the means for the agent to be aware of the state of the system, of its own state, and to
hold expectations of what actions it and other participants can take at a given state. For
modelling the social space, the language should be able to express those elements that
afford participants the means to have a shared ontology, a common interaction model
and communication standards coupled with some form of governance.

2.3. Design workbench. It would include the concrete versions of the affordances.
That is, the “vocabulary” that the description languages will use in order to model an
actual system. So, for instance, if the system will involve norms, then the workbench
would have norms expressed with a particular structure together with concomitant para-
normative components like normative inference, nor-enforcement mechanisms, etc. In
the uHelp example, we need functional norms that have the shape of “permissions” and
they are represented as production rules.

3. Technological artifacts: The challenge is to build technological artifacts that
facilitate and ensure the conscientious deployment of HOSS. One way of addressing
this is to have an artifact for each modular component of the design workbench the
components that are needed to assemble those modules. Again, for uHelp there is a
specification language SIMPLE [7], that is interpreted by the uHelp app. An ambitious
approach towards thorough implementations is to have full platforms that allow a trans-
lation form a specification to technological platform that implements that specification.
The [2] volume discusses this line, and several frameworks for meta-modelling and
implementation are available [1]. Another way to achieve this formal soundness is to
start with an existing platform —BrainKeeper, Amazon Turk, Ushahidi— provide its
formal counterpart and use ti to analyse applications of th platform.

4. Empirical study of HOSS: Complementing Topic 1, we find two further reasons
to study working HOSS. One is to document compliance and failure of conscientious
principles and recommendations, the other is to use the information that arises from
their use as source data for socio-cognitive research.

5. Methodologies for conscientious design and deployment The challenge is to
develop a precise conceptual framework to describe conscientious features and method-
ological guidelines that prescribe how to recognise and achieve the intended properties
and behaviour in conscientious HOSS. We need to explore key values like fairness,
trustworthiness, social empathy in principled terms (see [12,18]) so that we can speak
properly of achieving engineering tasks like requirement elicitation or tooling consci-
entiously.

7 Peroration in four claims

First: The era of online social systems that on the surface seem to satisfy augmented
social needs is here to stay. However, the rise of such systems has been so dramatic that
we simply do not know what the effects will be either psychologically, sociologically,

14

culturally or politically.

Second: Some online social systems that involve human and artificial agency (HOSS)
exhibit behaviours like hidden agency, inadequate stakeholder empowerment and lack
of social empathy that may be problematic and deserve to be prevented or contended
with in a sound manner.

Third: The challenge we face is to develop precise notions and the associated method-
ological guidelines and tools to design HOSS systems in a conscientious way that is
thorough, mindful and responsible.

Fourth: This paper is a call to arms for such an initiative. Those of us working in the
theory, design and implementation of agent-based systems, work in a field where there
is an unharvested opportunity to apply our methods and tools in ways which could have
impact far beyond that we might have imagined. It may mean a changing of the focus of
our community and having to break away from our comfort zones describing idealised
scenarios for agents, and in doing so we would need to be extremely humble about what
we might achieve. But we should try, as the potential for sustained lasting impact for
social and cultural good is potentially large.

The responsibility is substantial but the opportunity is ours.

Acknowledgements

The authors wish to acknowledge the support of SINTELNET (FET Open Coordinated
Action FP7-ICT-2009-C Project No. 286370) in the writing of this paper. This research
was partially supported by project MILESS (MINECO TIN2013-45039-P).

References

1. Huib Aldewereld, Olivier Boissier, Virginia Dignum, Pablo Noriega, and Julian Padget. So-
cial Coordination Frameworks for Social Technical Systems. Number 30 in Law, Governance
and Technology Series. Springer International Publishing, 2016.

2. Giulia Andrighetto, Guido Governatori, Pablo Noriega, and Leendert W. N. van der Torre, ed-
itors. Normative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2013.

3. P. Brey. Values in technology and disclosive computer ethics. In L. Floridi, editor, The Cam-
bridge Handbook of Information and Computer Ethics, pages 41 – 58. Cambridge University
Press, Cambridge, 2010.

4. Cristiano Castelfranchi. InMind and OutMind; Societal Order Cogni-
tion and Self-Organization: The role of MAS. Invited talk for the IFAA-
MAS “Influential Paper Award”. AAMAS 2013. Saint Paul, Minn. US.
http://www.slideshare.net/sleeplessgreenideas/castelfranchi-aamas13-v2?ref=httpMay
2013.

15

5. Rob Christiaanse, Aditya Ghose, Pablo Noriega, and Munindar P. Singh. Characterizing
artificial socio-cognitive technical systems. In Andreas Herzig and Emiliano Lorini, editors,
Proceedings of the European Conference on Social Intelligence (ECSI-2014), Barcelona,
Spain, November 3-5, 2014., volume 1283 of CEUR Workshop Proceedings, pages 336–346.
CEUR-WS.org, 2014.

6. David Collingridge. The Social Control of Technology. St. Martin’s Press, London, 1980.
7. Dave de Jonge and Carles Sierra. Simple: a language for the specification of protocols,

similar to natural language. In Murat Sensoy Pablo Noriega, editor, The XIX International
Workshop on Coordination, Organizations, Institutions and Norms in Multiagent Systems,
Istanbul,Turkey, May 2015.

8. Mark d’Inverno, Michael Luck, Pablo Noriega, Juan A. Rodriguez-Aguilar, and Carles
Sierra. Communicating open systems. Artificial Intelligence, 186(0):38 – 94, 2012.

9. L. Floridi, editor. The Onlife Manifesto: Being Human in a Hyperconnected Era. Springer
International Publishing, Cham, 2015.

10. B. Friedman, editor. Human Values and the Design of Computer Technology. Cambridge
University Press, Cambridge, 1997.

11. J. R. Galliers. The positive role of conflicts in cooperative multi-agent systems. In Y. De-
mazeau and J.-P. Mueller, editors, Decentralized AI: Proceedings of the First European
Workshop on Modelling Autonomous Agents in a Multi-Agent World. Elsevier, 1990.

12. Andrew J. I. Jones, Alexander Artikis, and Jeremy Pitt. The design of intelligent socio-
technical systems. Artif. Intell. Rev., 39(1):5–20, 2013.

13. C. P. Knobel and G. C. Bowker. Values in design. Commun. ACM, 54(7):26–28, 2011.
14. Andrew Koster, Jordi Madrenas, Nardine Osman, Marco Schorlemmer, Jordi Sabater-Mir,

Carles Sierra, Dave de Jonge, Angela Fabregues, Josep Puyol-Gruart, and Pere Garcı́a. u-
help: supporting helpful communities with information technology. In Proceedings of the
First International Conference on Agreement Technologies (AT 2012), volume 918, pages
378–392, Dubrovnik, Croatia, 15/10/2012 2012.

15. Pablo Noriega, Julian Padget, Harko Verhagen, and Mark d’Inverno. The challenge of arti-
ficial socio-cognitive systems. In A. Ghose, N. Oren, P. Telang, and J. Thangarajah, editors,
Coordination, Organizations, Institutions, and Norms in Agent Systems X, Lecture Notes in
Computer Science 9372, pages 164–181. Springer, 2015.

16. N. Osman and C. Sierra. A roadmap for self-evolving communities. In A. Herzig and
E. Lorini, editors, Proceedings of the European Conference on Social Intelligence (ECSI-
2014), Barcelona, Spain, November 3-5, 2014, volume 1283 of CEUR Workshop Proceed-
ings, pages 305–316. CEUR-WS.org, 2014.

17. Whitney Phillips. Loling at tragedy: Facebook trolls, memorial pages and resistance to grief
online. First Monday, 16(12), 2011.

18. J. Pitt, D. Busquets, and S. Macbeth. Distributive justice for self-organised common-pool
resource management. ACM Trans. Auton. Adapt. Syst., 9(3):14, 2014.

19. John R. Searle. What is an institution? Journal of Institutional Economics, 1(01):1–22, 2005.
20. Eric Trist. The evolution of socio-technical systems. Occasional paper, Ontario Ministry of

Labour, 2, 1981.

16

The Role of Values

Klara Pigmans, Huib Aldewereld, Virginia Dignum, and Neelke Doorn

Delft University of Technology, Delft, The Netherlands

Abstract. Decision-making processes involving multiple stakeholders
can be rather cumbersome, turbulent and lengthy. We take as an ex-
ample ongoing discussions in the Netherlands concerning the decision
whether or not to flood pieces of land as a compensation for earlier lost
ecological landscape. The stance of some stakeholders, upholding their
individual interests, can slowdown or even block such processes. Recent
research suggests that a focus on the values of the stakeholders could
benefit those decision-making processes. However, the role of the values
is not yet fully understood. To investigate the interaction between values,
norms, and resulting actions in decision-making processes, we introduce
a taxonomy to explore the relations between these concepts. The taxon-
omy presented in this paper is a first step towards a framework to model
decision-making processes with the aim of understanding the role that
values play in decision-making processes.

1 Introduction

Decision-making processes with multiple stakeholders can be complex,
depending on stakeholders’ behaviour [11,12]. For example, in the Nether-
lands, the decision about flooding the Hedwig polder has been a heated
debate among the stakeholders. The decision to flood the polder of 299
hectare located in South-Western Netherlands, was taken already in 1977
to compensate for earlier lost ecological landscape. This decision has been
both contested and supported ever since, by the different involved stake-
holders, which include local residents, Dutch and various Belgium parlia-
ments, environmental groups, farmers, and the European Commission.
This is a classic example of how the stance of the stakeholders can slow-
down or even block the decision-making process, and correspondingly
the related (plans for) development.
To understand the development of such decision-making processes and
the reason why some of them are turbulent or cumbersome, we need
to explore the relation between the concepts involved in those processes.
Research [6,9] suggests that values can play an important role in decision-
making processes and that a value sensitive approach could therefore
benefit such processes.
Moreover, at a closer look, it seems that it is not necessarily a value that
influences the process. On the contrary, values are generally so vaguely
defined that stakeholders all acknowledge their importance in abstract
terms. It is rather the conception [10] that stakeholders have of this value

that can differ among the stakeholders and that influences their take on
the process. E.g. justice is a value that is generally considered to be
important and therefore supported. Yet, what justice entails, is a topic
of debate.
In this paper we present a taxonomy to explore the relation between
values, value conceptions, norms and the corresponding actions. By doing
so, we take a first step towards the means to model these concepts in a
decision-making context, which is needed to understand the way these
concepts interact and how they influence the decision-making processes.
The penultimate goal of this research is to explore and show what role
values take in decision-making processes and whether a focus on the
values and value conceptions provides a better means to solve difficult
cases, as suggested by the earlier research in [6,9].
The remainder of this paper is structured as follows. In the next section
we discuss the ideas behind the concepts, based on literature. In sec-
tion 3 we describe and depict the collective structure of decision-making
processes, and the taxonomy of the role of values in these processes. Sec-
tion 4 discusses the context of this research by describing related work.
In section 5 our conclusions and ideas for future work are presented.

2 Background

Before we can come to a taxonomy of values in decision-making processes,
we first need to understand what the relevant concepts are and why these
are taken into account.

2.1 Values

Values are defined in many different ways, e.g. as an enduring belief
that a specific end-state is desirable over another [13], what a person
or group considers important in life [7], or as guiding principles of what
people consider important in life [2].
We assume that values can be considered to be more or less universal,
like Schwartz and Rokeach state in their separate value surveys [2], but
also like the values in decision making as stated by [1]. Justice, freedom,
benevolence, and security are values that are broadly considered impor-
tant in different cultures, organisations, and societies. The interpretation
of these values is a different story, as explained in section 2.2.
In addition, ample research has been done on value typologies. The sur-
veys of [14] resulted in 10 key value types, including power, hedonism,
benevolence and security, describing relations between values. Earlier,
[13] concentrated on the connection between values and behavior, dis-
tinguishing terminal values such as ‘family security’ and ‘freedom’, and
instrumental values such as ‘courage’ and ‘responsibility’. Since we are
taking the decision-making process as our point of reference, the value
hierarchy for management decisions [1] provides an interesting model
as well. Bernthal distinguishes a business firm level, economic system
level, society level, and an individual level. In multi-stakeholder decision-
making processes in the public sector, these levels are very relevant: often

stakeholders are involved that are entrepreneurs or companies with busi-
ness level values, including profits, survival, growth. Then if resources are
involved, economic system values apply, such as allocation of resources,
production and distribution of goods and services. The governmental au-
thorities are likely to have societal values: culture, civilization, order and
justice. Last, individuals will have values such as freedom, opportunity,
self-realisation, and human-dignity.

2.2 Context and Value Conceptions

The difference between values and their interpretations is –in slightly
different wording–, described by [10] as contestable concepts and concep-
tions. He describes contestable concepts as unitary and vague concepts,
while their conceptions are contested since they are the arguments for
how the concept should be interpreted in practice. Examples of contested
concepts are liberty and social justice, which in this research we consider
as values.
We assume that the context of a stakeholder or agent defines how a value
is perceived. This context is the physical and social setting in which
people live or in which something happens or develops. It includes the
culture that the individual was educated or lives in, and the people and
institutions with whom they interact1.
This means that one agent can have multiple contexts, since it can e.g.
work in a certain organisation, live in a certain CO2-neutral community,
and at the same time has fishing as a hobby, be member of a fishing
community
These contexts influence the conceptions people have of values.

2.3 Vision and Collective Decision-Making Process

Since this research focuses on values in decision-making processes in par-
ticular, we include the vision and the collective decision-making process
in our conceptualisation. The vision is expressed by an authority in long
term documents or in vision reports in which the values of the authority
are articulated in terms of vision, mission and plans. This vision repre-
sents the institutional objective that is set to realise the values, as also
discussed in [5] as part of the abstract level. In order to accomplish this
vision a collective decision-making process has to take place. In this pro-
cess, the vision, different roles, and the norms of the agents are combined
to come to a decision about which action to take.

2.4 Agents, Norms and Actions

For the definition of agents, norms and actions, we follow the vast body of
research as presented in e.g. COIN and NorMAS, specifically, for this pa-
per we use definition of agents as indicated by [8]. The decision-making
process has several stakeholders, which are represented as agents. An
agent can represent an individual stakeholder or a collective of stake-
holders, e.g. farmers that unite their voice during the process.

1 Definition from Wikipedia: https : //en.wikipedia.org/wiki/Socialenvironment

3 Taxonomy of the Role of Values

The taxonomy that we present in this section has both an individual
structure, describing the concepts that are relevant for the individual
agents, as well as a collective structure representing the collective con-
cepts of the decision-making process. We first describe the two struc-
tures separately, after which we connect them into the taxonomy. All is
explained using an example.

3.1 The Collective Structure

The collective concepts in multi-stakeholder decision-making processes
represent the commonalities in the process. The collective structure in
itself seems rather straight forward, as depicted in figure 1.

Fig. 1. Collective structure.

The collective decision-making process is initiated to realise the vision of
authorities. This vision is derived from one or more values which are un-
derlined by the involved authorities. The decision-making process leads
to collective actions that will contribute to the realisation of the vision,
and therefore the value.
We go over the structure step-by-step starting with the value. In this
case we use the example of water safety as the underlying value.
The vision expresses how the value will be realised in terms of a ‘col-
lective objective’, e.g. no floods should occur in the urban areas of the
region. The vision is expressed in long term planning reports by the
province and the municipality, including at least the value water safety,

but other values, such as culture could be expressed in the vision as well.
For simplicity sake, we only focus on one value here.

In figure 1, the collective decision-making process follows from the
vision.. The collective decision-making process does not take place at a
single moment in time, but includes meetings, discussions, deliberations,
one-to-one meetings, newsletters, informative events and compensation
negotiations. In policy making, it often it takes decades to get to the
point where a decision is actually agreed upon.

The collective action following from the collective decision-making pro-
cess is in the end agreed upon by all agents. In the water safety example,
the action could be to adjust the flow of the river that causes floods in
the urban areas in the region, to evacuate an area or build a dike.

3.2 The Individual Structure

Because of the many inter-dependencies with the collective structure,
the individual structure can not be depicted as a stand-alone separate
structure, but we can still discuss the concepts themselves individually.

Fig. 2. The individual structure of decision-making processes.

A value conception is the interpretation of a value, so it has a direct
relation to value, to the context that influences the value conception and
the agent who has the value conception. With the value water safety, pos-
sible conceptions of water safety include risk prevention, flood defense,

flood mitigation, flood preparation, and flood recovery. Each of these
conceptions contributes to the value water safety. In addition, an agent
can have multiple conceptions: one agent can perceive flood defense and
flood recovery combined as water safety.
The stakeholders that are involved are all represented as agents, this in-
cludes water authorities, municipality, province, inhabitants, agricultural
entrepreneurs, property developers, and property owners.
The individual actions are taken by agents based on the norms they
have. Individual actions could include lobby for/report on/organise a
demonstration against/support that what is happening in the collective
structure.

3.3 The structures combined in the taxonomy

The taxonomy of the role of values in multi-stakeholder decision-making
processes is depicted in figure 3. The collective structure and the indi-
vidual structure are related in multiple ways, including trough context
and norms, which are part of both structures.

Fig. 3. Taxonomy of values, context, conceptions, norms, and actions in decision-
making processes.

Value conceptions are influenced by the context of an agent. An au-
thority representative who has been working for the water authority for
years and lives in a different region, will be influenced by both the organ-
isational culture and the geographical distance to the action that will be

taken; a local agricultural entrepreneur who has continued a large scale
cattle farm after its parents could no longer run the business will in its
turn be influenced by the history and inheritance of the company and
by the geographical proximity to the actions to take.
Each value conception has a number of norms. The norm for a risk pre-
vention conception could be that the chance that a flood occurs should
always be less than 0,05% (fictional norm). The norm for the flood prepa-
ration conception could be ‘the water should not exceed level x’ (fictional
norm).
Moreover, the vision follows from the value and the context. The vision
‘no floods in urban areas’ comes from the value water saftey in a context
of water governance in a riverine region with both urban and countryside
areas.
The socially or legally determined norms that agents have, e.g. the flood
risk should be below a certain threshold, influence the collective decision
making process.
Finally, the individual actions and the collective actions need to be
aligned for the collective decision-making process to be succesfull. If
the individual actions taken are ‘demonstrating against the vision’, then
alignment with the collective action will be difficult.

4 Related work

In philosophical literature, e.g. [15], a direct relation between values and
norms is indicated. Values, norms and design requirements are described
as a value hierarchy, with values on top and design requirements at the
bottom. There it is stated that values are specified by norms, which in
their turn are specified by design requirements. The other way around,
design requirements are in place for the sake of a norm, and a norm is
in place for the sake of a value.
In the field of normative multi-agent systems, the use of values has been
explored by [3], [4] and [5].
First, [3] describes the interaction between system norms –norms that
are imposed on the agents by a system–, actions that are regulated by
those norms, and personal values of the agents that are being promoted
or demoted by those actions. While this is useful for the investigation
into reasons why agents follow or violate norms, we believe that such a
clear separation between the norms and values does not exist. Therefore,
we express the need to further explore the way values and norms interact
to determine collective and individual action.
Second, [4] argues that a value can be seen as a preference that can be
discussed and debated. They describe norms to constitute a link between
values and behavior, where norms serve this value. Their framework ex-
plores a connection between values, norms, goals and actions. In this
research we want to take this one step further by exploring the role of
these concepts in decision-making processes.
Third, the OMNI framework [5] discusses norms, values, context and
social structures thoroughly, where each concept is located in a three
by three matrix with three different levels and three dimensions. Yet,

values, agents, roles and actions are not discussed in terms of their direct
relationship with each other, but rather in relation to the levels and the
dimensions. To fully understand their role in decision-making processes
we need to further explore these direct relations.

5 Conclusion and Future Work

Turbulent or cumbersome decision-making processes can slowdown or
even block the plans for spatial development. Values are considered to
play an important role in preventing or overcoming conflicts in such pro-
cesses. In order to understand how values influence these processes, we
discussed the relevant concepts and the relations between them. This
resulted in a taxonomy with an individual structure and a collective
structure. The individual structure of value conceptions, agents, and in-
dividual actions was then related to the collective structure, containing
values, vision, collective decision-making process and collective action.
Norms and context are concepts that are part of both structures. This
taxonomy is the first step to explore and understand the concepts of
decision-making processes.
So far, we did not take institutional aspects such as roles, norms and
contexts into account. Further research is needed to expand the tax-
onomy with those aspects, including clear and detailed definitions on
the attribute level. After expanding the taxonomy, the next step will be
to formalise the concepts and relations, so that we can start modelling
complex decision-making processes.

Acknowledgements

This work is part of the Values4Water project, subsidised by the research
programme Responsible Innovation, which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO) under Grant
Number 313-99-316. The work of Neelke Doorn is supported by NWO
under Grant Number 016-144-071.

References

1. W. Bernthal. Value perspectives in management decisions. Journal
of the academy of management, 5(3):193–196, 1962.

2. A. Cheng and K. Fleischmann. Developing a meta-inventory of hu-
man values. Proceedings of the American Society for Information
Science and Technology, 47(1):1–10, 2010.

3. K. Da Silva Figueiredo and V. Torres da Silva. Identifying conflicts
between norms and values. In Coordination, Organizations, Institu-
tions, and Norms in Agent Systems IX. Springer International Pub-
lishing., 2013.

4. F. Dechesne, G. Di Tosto, V. Dignum, and F. Dignum. No smoking
here: values, norms and culture in multi-agent systems. Articficial
intelligence and law, 21:79–107, 2013.

5. V. Dignum, J. Vazquez-Salceda, and F. Dignum. OMNI: Introducing
social structure, norms and ontologies into agent organizations. In
Programming multi-agent systems, pages 181–198. Springer Berlin
Heidelberg, 2004.

6. N. Doorn. Governance experiments in water management: From
interests to building blocks. Science and Engineering Ethics, pages
DOI: 10.1007/s11948–015–9627–3, 2016.

7. B. Friedman, P. H. Kahn, and A. Borning. The handbook of infor-
mation and computer ethics, chapter 4: Value sensitive design and
information systems, pages 69–101. Wiley, 2008.

8. A. Ghorbani. Structuring socio-technical complexities: modelling
agent systems using insitutional analysis. PhD thesis, Delft Uni-
versity of Technology, 2013.

9. L. Glenna. Value-laden technocratic management and environmen-
tal conflicts: The case of the new york city watershed controversy.
Science, Technology & Human Values, 35(1):81–112, 2010.

10. M. Jacobs. Sustainable development as a contested concept. In
A. Dobson, editor, Fairness and futurity. Oxford university press,
1999.

11. M. Kolkman, M. Kok, and A. van der Veen. Mental model mapping
as a new tool to analyse the use of information in decion-making in
integrated water management. Physics and chemistry of the earth,
30:317–332, 2005.

12. M. Reed. Stakeholder participation for environmental management:
a literature review. Biological conservation, 141:2417–2431, 2008.

13. M. Rokeach. The nature of human values. New York: Free Press,
1973.

14. S. Schwartz. Are there universal aspects in the structure and contents
of human values? Journal of Social Issues, 50(4):19–45, 1994.

15. I. Van de Poel. Philosophy and engineering: reflections on practice,
principles and process, chapter 20: Translating Values into Design
Requirements, pages 253–266. Springer Netherlands, 2013.

Representing human habits:
towards a habit support agent

Pietro Pasotti1, M. Birna van Riemsdijk2, Catholijn M. Jonker3

Abstract. Human behaviour is constrained by obligations on the
one hand, by the routines and habits that constitute our normal be-
haviour on the other. In this paper, we present the core knowledge
structures of HabInt, a Socially Adaptive Electronic Partner that
supports its user in trying to adopt, break or maintain habitual be-
haviours. We argue that HabInt’s role is best conceived of as that
of an extended mind of the user. Hence, we pose as requirements
that HabInt’s representation of the relevant aspects of the user and
her world should ideally correspond to that of the user herself, and
use the same vocabulary. Furthermore, the knowledge structures of
HabInt should be flexible and explicitly represent both its user’s ac-
tual habitual behaviours and her desired habitual behaviours. This
paper presents knowledge structures that satisfy the aforementioned
requirements. We interleave their syntactic specification with a case
study to show their intended usage as well as their expressive power.

1 Introduction

Man is a creature of habit. While people display a fascinating variety
of behaviours even across relatively simple domains, it is also true
that from day to day most people are quite fixed in their ways. Carry-
ing out habitual activities is mostly unproblematic and even desirable
([29]). However at times unforeseen circumstances make our habit-
ual choices unavailable or their outcomes undesirable. Other times
we wish to adopt or break a habit, and both are difficult enterprises.
While many of us normally have little or no difficulty in dealing with
these challenges ([29]), the actual amount of nuisance is subjective.
To some, even small disruptions of daily routines may cause anxiety
and distress ([12, 18]), whereas for others, such as people suffering
from depression, breaking habits can be beneficial ([24]). In this pa-
per, we take the first steps in developing a concrete implementation
of HabInt, a Socially Adaptive Electronic Partner ([31]) to support
habit formation and breaking.

Our working definition of habit is the shared view among social
psychologists in the tradition of Hull ([16]). They stress the Pavlo-
vian nature of habits as goal-independent learned associations be-
tween responses and features of performance contexts.4

As argued in [32], a habit is not merely a frequently performed be-
haviour. A habit is best seen as a mental object resulting from repeat-
edly choosing the same behaviour when faced with the same choice
in a stable context. A habit is thus an association between some fixed
environmental (and temporal) cues and a learned response. The more
a habitual behaviour consolidates, the more it acquires features in-

1 TU-Delft,The Netherlands, email: P.Pasotti@tudelft.nl
2 TU-Delft,The Netherlands, email: M.B.vanRiemsdijk@tudelft.nl
3 TU-Delft,The Netherlands, email: c.m.jonker@tudelft.nl
4 Cfr. [35] for an overview and further literature.

cluding: a degree of automaticity; less need for attention/focus, so
that it can be performed concurrently with other tasks; smaller emo-
tional involvement; and finally a habit is not goal-aware: while typ-
ically consistent with one’s goals, the goal it was originally directed
at is no longer consciously pursued. (cfr. [35])

The two knowledge structures of HabInt that form the core of this
paper are the Actual Behaviour Model (ABM) and the Desired Be-
haviour Model (DBM). The ABM encodes a set of overlapping chains
of user activities and the ways in which they are typically performed.
The DBM describes a ‘contextually ideal’ version of the ABM. The
nodes of ABM are associated with information about the values they
promote or demote, so that HabInt can keep track of the motivations
behind the goals and construct a model of the user’s preferences.

Section 2 describes the core aspects of HabInt architecture, and
formulates the requirements for the knowledge structures represent-
ing actual and desired behaviour. The ABM is presented in § 3 and
the DBM in § 4. In § 5 we give an overview of how HabInt can user
the ABM and DBM information to monitor for various types of user
anomalies. The related work is discussed in § 6. Finally, § 7, § 8 sum-
marize our findings and point out directions for future work.

2 Habit support agent: what and how

This paper focuses on those structures of HabInt that represent the
actual and desired behaviours of the user. The data they contain is
accessed by a monitoring component which locates anomalies and
hands them over to a module that determines what should the agent
do to support the user, thereby closing the interaction loop (see Fig-
ure 1). By interacting with the user and monitoring her behaviour,

User

Desired Habits
DBM

Actual Habits
ABM

conflict
monitor

support instructions

HabInt ui

ui / sensors

support

Figure 1. HabInt’s specific knowledge structures.
HabInt builds a model of the actual habits and typical activities of
the user and a model of the user’s desired habits. Desired habits are
descriptions of behaviours which the user wants to turn into habits.
These can be entirely new behaviours or changes to existing ones.

The monitoring module compares the user’s desired and actual
behaviour to detect conflicts: these are situations in which the user
may need support. As a conflict is detected, a separate module that
contains support instructions, previously provided by the user, is in-
voked. This module determines how should the agent intervene.

The ultimate goal of HabInt is to help the user achieve her goals
and promote her values. In this sense, an implementation of a HabInt
is best conceived of as part of the extended mind (see [9]) of its user.
This means that it must be trustworthy, reliable and accessible (cfr.
[9]) and so must be its knowledge. To make HabInt accessible and
trustworthy, we must provide knowledge structures that are as trans-
parent for the user as possible. The knowledge must be readily avail-
able for the user not only to use, but also to expand, contract and
otherwise modify in a way that matches the way behaviours are dis-
covered, explored, abandoned by people. To further enhance trust
and reliance, we limit the agent’s proactiveness to only those actions
that are explicitly requested by the user. Accessibility, for one, means
that the information/knowledge in the system must be easily accessi-
ble by the user. Consequently the HabInt has to store and manipulate
its user model explicitly (unlike, for example, a neural network). For
another thing, the user model should match the one the user has of
herself as closely as possible, i.e. it should be a shared mental model
(see [17]). Thus HabInt builds the vocabulary of goals, values, ac-
tivities and actions from the user’s wording. Summing up, HabInt’s
knowledge structures should be:

adaptable: obtained by interacting with the user. This entails that
they need to tolerate runtime updates and be built incrementally,
while remaining meaningful at all intermediate stages of the con-
struction process.

shared: correspond as much as possible to the user’s conceptual
structure and use the same vocabulary as the user does.5

explainable: HabInt needs to be able to carry out reasoning and
explain the reasons that led to its current beliefs, in a dialogue
referring to goals, values, and situational aspects ([30]). For ex-
ample, HabInt should be able to model and then explain back to
the user as requested which values are positively or negatively af-
fected by some activities, to which goals activities contribute, and
which values motivate which goals.

expressive: the structures need to accommodate uncertain, incom-
plete, and even inconsistent information. Finally, they must ex-
press the (context-dependent) behaviour enactment likelihood, for
that is how HabInt can tell whether a behaviour is a habit or not,
or whether it is becoming or ceasing to be one.

To show HabInt’s intended usage and the expressive power of its
knowledge structures, we introduce a few snapshots of the life of a
woman, Alice, as she interacts with Hal, her HabInt. Throughout the
paper we will refer back to these scenarios and show how they are
dealt with behind the scenes by Hal.

SCENARIOS: Alice and Hal

S1 Alice has a new job and would like to form a robust routine
for travelling there. Also she would like to stop oversleeping. To
help her with these issues Alice buys an HabInt, which she calls
Hal. After booting it, Alice explains that she has two goals: first, to
‘wake up’ and then to ‘get to work’. Hal asks what the options re-
garding the two goals are. It discovers that while there are a number
of ways to get to the workplace, there is only one way of waking up,
which requires remembering to set an alarm.
Alice explains to Hal that the main ways of getting to work are 1) by
car, and 2) by bike. Furthermore, one can go by bike in two ways,
2.1) via the fast but risky Route A, or 2.2) via the safer, but longer
Route B.

S2 Alice sometimes takes a cab to work. She feels no need for sup-
port in doing so, so when Hal reminds her to check the weather as

5 I.e. if the user refers to its habit of ‘brushing teeth after every meal’, then
that, literally, is the name HabInt stores.

she is leaving for work, she just says “well, actually today I’m go-
ing to work in some other way, so I won’t need it. You don’t need
to worry about this.” HabInt does not know how Alice is going to
work that day.

S3 Alice now has the habit of setting the alarm every single day.
However, exceptionally, on Mondays she forgets to set the alarm
almost every other week (Probably this relates to her Sunday night’s
Vodka Tasting Club meetings).

S4 Alice tells Hal that of the two options to go to work by bike, she
prefers the safe route (2.2) over the fast one (2.1). She explains that
being fast is not as important to her as being safe.

S5 Alice asked Hal to help her grow the habit of going to work by
bike. Years later, however, Alice decides to stop biking to work and
go by car instead. Thus specific habitual behaviours part of her pre-
vious biking-to-work-routine are no longer necessary. She tells Hal
the following: “(Instead of going by bike) now I’d like to go work
by car”, “I’ll also need to stop taking the raincoat as I go to work.”

S6 Alice long ago told Hal that she dislikes ‘smoking’, an action,
because it demotes ‘health’, which she greatly values. Consequently,
she has not smoked a single cigarette for 10 years now. However,
one day Hal learns that Alice is smoking. After inquiring, Hal is
told simply: “I want to start smoking.”

3 The Actual Behaviour model (ABM)
There are habits regarding what activities we carry out daily; i.e.
habits regarding, once something is done, what do we do next (next-
habits). We model such activity patterns by capturing the sequential
activation patterns of the goals that they purport to achieve.

Second, there are habits regarding the way in which we carry each
activity out. We will call them conc-habits, for concretisation habits.
The intuition is that just like the goal get home by car is intuitively
more concrete that the goal get home, the activity of driving home,
which achieves the former, is more concrete than the activity of going
home, which achieves the latter. Achieving the former goal entails
achieving the latter, but the converse does not hold. This is-a-way-of
relation between goals is what we intend to capture with the notion
of concretisation: we model habits regarding the way in which we do
things by modelling the underlying goal concretisation patterns.

Finally, there are habits regarding what actions we perform as part
of carrying out an activity (in a particular way): we call them Action-
habits. For every activity, we represent the actions the user can per-
form when she tries to achieve its goal, and capture the likelihood
that they are in fact performed.

In § 3.1 and § 3.2 we describe a knowledge representation lan-
guage based on these three notions. Finally, exploiting our represen-
tation of the actions’ consequences, we can express the values that
they affect, and hence talk about the motivation and preferences that
underlie behaviour choice and change. This is done in § 3.3.

The common basis of the language that the ABM is built upon is a
language of alphanumeric strings. HabInt parses the User’s messages
at the level of propositional logic operators and treats the remaining
uninterpreted strings as atoms. For example, “[the user is] not eating”
becomes ¬‘eating’. A propositional language over Strings6 Lstr is
the basis of the knowledge structures we define next. A logical con-
sequence relation is defined on formulae of Lstr in the standard way.
We use a,b,l as variables ranging over Lstr.

3.1 Activities: what we do and how we do it
Abstracting away the temporal features for the sake of simplicity, an
Activity is informally understood as something which the user does
to modify the current state of affairs. Most of our daily activities

6 We capitalise technical terms, to avoid confusion with common concepts.

are carried out with a purpose, which we call a Goal. Our working
definition of Goal is: a declarative description of the state of affairs
which the user would like to achieve by carrying out an Activity.

HabInt’s most fundamental knowledge structure represents the
user’s daily activities’ underlying goals, and what goals are concreti-
sations of what other goals. We call this knowledge the Goal Base.

The relation conc defines a branching structure of Goals that rep-
resents the way the user conceptualises her daily goals in terms of
more concrete versions of themselves. This is captured by the bi-
nary relation conc. A special role is played by toplevel Goals, which
are not a concretisation of any other Goal. In other terms, those for
which the user sees no need to provide a higher goal. Examples for
Alice include being awake early, having breakfast, getting to work
and back home again. Toplevel Goals are then linked to one another
by the relation next, forming a separate branching structure. This
structure represents the user’s potential Goal activation sequences:
information about what she might do after doing something else.

Definition 1 (Goals and Goal Base) The user’s Goal Base is a
triple G := 〈G, conc, next〉, where:

• G ⊆ Lstr is the current set of Goals of the user, with typical
variables g and g′.

• conc : G × G is a directed and acyclic concretisation relation,
such that ∀g, g′ ∈ G : conc(g, g′) iff g′ is a concretisation of g.

• next := topG × topG is a directed, acyclic relation such that
next(g, g′) if once she has satisfied goal g, the user may try to
satisfy (i.e. adopt) g′ next.

Furthermore, topG is the set of toplevel goals of G:

topG := {g ∈ G | ∀g′ ∈ G(¬conc(g′, g))}

Note that the user can specify as many Goals as she likes, and can
leave gaps and blanks. So, even if she habitually smokes at home,
her HabInt may never know. It is up to the user to inform HabInt
of alternative activities for the goals she mentioned to it, even if the
user leaves these underspecified. Hence HabInt must assume that
unknown, additional alternatives always exist.

By monitoring and interacting with the user, HabInt learns and
keeps track of the Activities that she carries out as she tries to achieve
her goals, and of the sequences of actions that compose these Activi-
ties. All the actions HabInt is aware of are kept track of in the Action
Base. The way we express Actions is standard practice:

Definition 2 (Actions and Action Base) Lact is the language of
actions, which are defined as formulae over Lstr of the form

α ∈ Lact := [l: a b]

where l is the name, a the precondition and b the postcondition of
the Action. The Action Base C ⊆ Lact is the current set of Actions.

By making the pre- and postcondition more detailed, the agent can
represent each of the user’s Actions in more or less detail, as well
as specify the way in which they can be sequentially executed. We
assume in what follows that HabInt has a planning module enabling
it to reason about how to chain Actions together based on this (tech-
nicalities omitted due to lack of space).

Activities group up actions that can be performed as part of achiev-
ing some goal, and assign a name to the full bundle. If the Act field of
an Activity is empty, that means that either performing that Activity
is obvious enough to the user (i.e., she needs no support on that) or

that she does not know yet. In that case, all an Activity does is asso-
ciate a declarative goal with an informal (and meaningless to HabInt)
description of a possible way to achieve it. All known Activities are
stored in the Activity Base.

Definition 3 (Activities and Activity Base) Given a set of Actions
from the Action Base Act ⊆ C, a goal g from the Goal Base G, and
a name l ∈ Lstr, an Activity A ∈ Luac is a tuple of the form:
〈l, g,Act〉. l is the name, g the goal, and Act the set of actions of the
Activity. The Activity Base A ⊆ Luac is the current set of Activities.

Through the Actions that compose them, Activities, too, can be made
more or less fine-grained. Activities whose Goals are toplevel encode
those activities that the user perceives as being self-justified or moti-
vated by some of her values.

These Goal-Activity structures can be viewed as a variant of Goal-
Plan Trees [27] where the conc-relation corresponds to OR-nodes,
AND-nodes are left implicit, and distinct GPTs can be connected by
the next relation.

[Behind the scenes of S1] Hal performs natural language analy-
sis and determines that Alice’s utterances mean the following: Alice
wants support with two activities: going from home to work and wak-
ing up. The corresponding Goals are ‘is awake’, 1 , and ‘is at work’,
2 , respectively. Furthermore, ‘go by bike’ and ‘go by car’, are names
of activities whose corresponding declarative goals are ‘is at work’ ∧
‘biked to work’, 3 , and ‘is at work’ ∧ ‘drove to work’, 4 . It has also
recorded how going by bike/by car are ways of going to work, but go-
ing to work seems not to be a way to do something else, and is thus
toplevel. The ABM is now as in Figure 2.

When Alice mentions how waking up requires having set
the alarm, an Action α achieving 2 (i.e. with 2 as postcon-
dition) is specified, which requires ‘alarm set’ to be true. For-
mally, α = [‘wake up’:‘alarm set’ ‘is awake’]. Now A is
〈‘waking up’, ‘is awake’, {α}〉.

1 2

3 4
A1 : next

conc

Figure 2. Hal’s ABM of Alice.
In a nutshell, the construction process of the ABM is as follows:

first, the user specifies a number of goals and whether each goal
stands in a conc or next relation to some other known goal. Sec-
ondly, the user gives the names of activities that can achieve that
goal, and, finally, she can describe the relevant actions that take part
in carrying out each activity. In this way, the user determines what is
an appropriate amount of specificity.

[Behind the scenes of S2] Hal learns that Alice does go to work,
but neither by car nor bike. Therefore Hal records a new Activity A,
whose goal g0 (a novel placeholder) is a concretisation of ‘at work’.
A is named ‘unknown alternative’. Maybe one day Alice will tell Hal
that she is going to work by ‘take[ing] a cab’. If so, Hal will update its
knowledge structures.

The above shows that the knowledge structures are expressive,
and explainable in that by manipulating directly the utterances
(as strings) HabInt can maintain a model using the same vocab-
ulary as the user. Furthermore, it is straightforward to define up-
date operations such as splitting an Activity into two sub-Activities,
adding/removing Actions, and splitting Actions into longer chains.

3.2 Habits: the way we normally do what we do
As we mentioned in § 1, a habit is not just a “frequent behaviour”.
However, frequency, automatism, ease of performance and other fea-
tures of habitual behaviours are correlated. in particular frequency

can serve as a predictor for the other features and it can be derived
from observing and communicating with the user ([35]). Therefore,
we chose to detect habits through the underlying behaviours’ enact-
ment likelihoods. We describe a user’s day as a sequence of toplevel
goals (given by next). Each of those can then be concretised in dif-
ferent ways (as described by conc), and each goal can be assigned,
via an Activity, a set of Actions that can be executed whilst achieving
it. This is information about what the user is known to sometimes do:
it defines the space of possible behaviours. Each one of these may in
practice be enacted rarely or never, and both their content and their
performance frequency can change over time. Consequently, we keep
the representation of what the user knows she may do (next, conc,
Activities) separate from the expectations regarding what she will do.

We have seen in § 1 that habits are cued by contexts. Hence we
must keep track of those parts of the context that are believed by
the user (or by some internal learning algorithm) to cue some be-
havioural response. We call them Triggers. Let T ⊆ Lstr be a finite
set of known Trigger. Let τ range over T.

However, reacting to Triggers is not automatic: even in the pres-
ence of a Trigger the cued behaviour may not follow. Then we must
record, given the presence of a Trigger, the likelihood of the associ-
ated behaviour occurring. This is captured by prob. Formally, prob
is a function of type (T×G× (G ∪ Lact))� [0, 1]. Intuitively:

prob(g′|τ, g) = x, for toplevel goals g and g′, means that given that
g has been just achieved and that the Trigger τ holds, then the user
adopts g′ with likelihood x. If g′ is not toplevel, then it means
that while she tries to achieve g, and given Trigger τ the user is
expected to adopt g′ with likelihood x ∈ [0, 1].

prob(α|τ, g) = x means that if the goal g is adopted and τ holds,
then the user is expected to execute action α with likelihood x.

Some behaviours’ Triggers can be unknown, or so frequent to be
irrelevant. In that case the Trigger is true.

If, given a Trigger, the enactment likelihood of some behaviour
is above a certain threshold t ∈ [0, 1], HabInt infers that the be-
haviour is a habit. We call t the user’s habit threshold, which is
the performance likelihood above which the user feels confident in
calling something a habit. Given existing research (e.g. [36]), it is
reasonable to assume that t > 0.5. The return values of prob are
estimated based on information from the user and/or sensor data (cf.
[20]). Now we must keep in mind a key property of the notion of
Goal we employ here: Goals that are concretisations of the same goal
cannot be adopted concurrently. While this is not generally true for
next-related Goals, here for simplicity we assume it is.7 For exam-
ple, after waking up, Alice can go to work or go to the beach, not
both. Also, as she goes to work, Alice can go ‘by bike’ or ‘by car’,
not both. Therefore, no matter how prob is calculated, the likeli-
hoods must sum up to one on all outgoing next paths and on all
outgoing conc paths too. Actions are executed independently from
one another, so there is no such constraint there.

The data structures we have defined so far allow us to express
the types of habits described at the beginning of this section: next-
, conc- and action-habits. These correspond to transitions between
next-related goals, conc-related goals, and 〈g, α〉 pairs respectively.

7 So at any given moment the user can adopt at most one toplevel goal g, and
an arbitrarily long conc chain of Goals with g at one end.

Definition 4 (Habits) ∀ g, g′ ∈ G, α ∈ Lact, τ ∈ T, and given a
habit threshold t ∈ [0, 1], we define:

hab(g′|τ, g) ⇐⇒

{
next(g, g′) and prob(g′|τ, g) > t or
conc(g, g′) and prob(g′|τ, g) > t

hab(α|τ, g) ⇐⇒ prob(α|τ, g) > t

Intuitively, if g′ is toplevel, hab(g′|τ, g) means that the user habitu-
ally adopts g′ given that g has been achieved immediately before, and
that τ holds: a next-habit. If g′ is not toplevel, hab(g′|τ, g) means
that given that g is adopted and τ holds, the user habitually adopts g′

too. In other words, as g′ is a concretisation of g, the user habitually
tries to achieve g by achieving g′: a conc-habit. hab(α|τ, g), finally,
means that the user habitually executes α given that she has adopted
g and τ holds: an Action-habit.

[Behind the scenes of S3] Suppose that Hal knows that Alice’s habit
threshold t is 0.89. Hal then updates its ABM to reflect how her now-
established habit of setting the alarm (the Actionα) is endangered if the
Trigger ‘monday’ is present: while under no Trigger the behaviour has
likelihood 0.9, when ‘monday’ is the case it goes down to 0.6 (HabInt
sets these values through interaction or monitoring).

prob(α|true, ‘wake up’) = 0.9

prob(α|‘monday’, ‘wake up’) = 0.6

3.3 Values: why we do what we do as we do it

Even though a HabInt having only the above structures can already
be of use, in our opinion it needs to understand the motivations (based
on values) for the choices the user makes to best support her. The
user may need support in making satisfactory choices regarding her
behaviour, which involves comparing competing Actions, based on
their outcomes; competing Activities, based on the Actions they are
associated with; and competing Goals, based on the Activities that
they can be achieved by. For supporting the user, HabInt needs to
understand and reason with the motives of the user’s behaviour, and
thus needs to know and understand her values. Paraphrasing [19],

VALUES

GOALS

ACTIVITIES

ACTIONS

m
oti
vate

concretise to decom
po

se
to

affect

Figure 3. How values close the concretisation loop.

we understand values as a hierarchy of desirable, abstract, cross-
situational goals. Ultimately, any activity is motivated by the pursuit
of values. Still, all actions that we take as part of any activity end
up affecting the same values (see Figure 3). So the user interface
must be capable of value-based argumentation, and it is therefore
natural to store also these knowledge structures in the unified world
model we are describing here. As our HabInt is a personal support
agent, here we assume that every user has her own (hierarchy of)
values and hence we ignore their often-alleged universality ([23]).
With the help of the user, HabInt learns what values she has, how
important they are relative to each other, and what world features
(literals from Lstr) can affect them. HabInt reasons about Values
using value-based argumentation frameworks (cfr. [5]).

Definition 5 (Values and Value Base) We define V := 〈V,C , pro〉
to be the Value Base of the user, where

• V ⊆ G denotes the set of given Values of the user.
• C ⊆ V × V is a preorder, such that ∀v, v′ ∈ V : v C v′ holds if
v is less important than v′.

• pro := Lstr × V � {↓, -, ↑} is an injective function encoding
the way literals a from Lstr promote (↑), demote (↓) or not affect
(-) the user’s values.

Note that the default return value of the function pro is -: we assume
that the user does not know or does not care, until she says otherwise.

When the user and her HabInt are reasoning about the best course
of action to take, the postconditions of the actions involved play the
fundamental role. Each postcondition expresses not only the goal its
Action achieves but (in conjunctive normal form) a list of its effects.
Exploiting this fact, HabInt can infer from the Value Base the way
Actions first, then Activities affect Values.

As abstract goals of activities, values may well be unspecified and
in the background.8 But when it comes to evaluating the effects of
the concrete Actions that together form an Activity, the importance
and visibility of values become greater. Actions can be said to pro-
mote and demote values by bringing about their postcondition and,
through the Actions that habitually achieve them, so can Activities.
While Actions’ outcomes are stable, habits dictate which Actions are
executed when carrying out an Activity. Therefore, to determine what
values are affected by an Activity, one must factor in habits.

With the Value Base, all parts of the ABM have been discussed.

Definition 6 (Actual Behaviour model (ABM)) The Actual Be-
haviour Model is the tuple A := 〈V,G,A,C,T, prob, t〉, where the
elements are respectively, the Value Base, the Goal Base, the Activity
Base, the Action Base, the set of Triggers, the conditional likelihood
function, and the habit threshold.

Given pro, which tells how Lstr literals affect Values, we gener-
alise it to pro∗, which also tells how Actions and Activities do.

Definition 7 (Promote) Given an ABM A, the function pro∗ :=
((Lstr ∪ Lact ∪ Luac)× V)� {↑, ↓, -} is defined as follows:

• If a is a literal from Lstr, then pro∗(a, v) = pro(a, v).
• If ϕ ∈ Lstr, then we require all the disjuncts to ‘agree’ on v:

pro
∗(ϕ ∨ a, v) =

{
pro(a, v) if pro∗(ϕ, v) = pro(a, v)

- otherwise

• Let α be an action [l: a b], and cnf(α) denote the set of b’s
conjunctive normal form’s conjuncts (with � ∈ {↑, ↓, -}). Given:

Cα�v := {ϕ ∈ cnf(α) : pro
∗(ϕ, v) = �}

pro
∗(α, v) = ↑ iff |Cα↑v| > |Cα↓v| (1)

similar to [33], we say that α promotes a Value v (pro∗(α, v) =
↑) if it brings about more v-promoting than v-demoting postcon-
dition. The conditions for pro∗(α, v) = ↓ or = - are very similar:
change ‘>’ to ‘<’ and ‘=’ in (1) respectively.

• Let A = 〈l, g,Act〉, and h(A) := {α ∈ Act | ∃τ, g :
hab(α|τ, g) holds in A}; then

DA�v := {α ∈ h(A) : pro
∗(α, v) = �}

pro
∗(A, v) = ↑ iff |DA↑v| > |DA↓v|

8 Think about the habitual activity of going back home (after a day of work).
The user can, but does not need to specify which values that macroscopic
activity promotes.

pro∗(A, v) = ↑ means that the activity A promotes v. The con-
ditions for demoting or not affecting v are again very similar.

This is crucial for HabInt to represent inconsistencies between what
the user does, or wishes to do, and his Values (cf. § 5 for an example).

[Behind the scenes of S4] Hal learns that Alice considers ‘be safe’
(v1) and ‘be fast’ (v2) as Values. Hence, it adds them to its previously
empty Value Base, which now is V = 〈{v1, v2},∅,∅〉. Then it learns
that biking through Route A (an Activity A) promotes ‘safety’, but it
does not know what specific postcondition of what Action involved in
the Activity promotes it. Hence, first Hal adds a dummy Action α =
[‘something’: ‘something’ ‘a0’] to A (where ‘a0’ is a new atom),
and then adds to its Value Base the fact that pro(‘a0’, ‘safety’) = ↑.
Via the same process, it also records that Route B promotes ‘be fast’.
From this, Hal can deduce that pro∗(A, ‘safety’). Finally, it learns:
‘be fast’ C ‘be safe’. (Actually things are a bit more complicated,
as promoting ‘safety’ seems to be a property the Activity always has,
according to Alice. Hence, by chaining post- and pre-conditions appro-
priately, Hal must ensure that α is presumed executed by the user every
time the Activity of ‘biking through route A’ is performed.)

4 The Desired Behaviour model (DBM)
People that are not quite satisfied with their actual behaviour may tell
their HabInt what is bothering them. Only then, can they describe
how they would like to be supported in changing it.

While the ABM of a user describes what the user does (and how she
does it) in specific situations, the Desired Behaviour Model (DBM)
describes a set of Desired Habits to the ABM that reflect how the
user would like her ABM to become. The key intuition here is that
if conforming to a desired behaviour were not an issue under any
circumstance, the user would not mention it to HabInt. Therefore,
HabInt treats each Desired Habit as a support request, which still
does not convey any information about how the agent can in practice
support the user. Later on, each Desired Habit can be linked to one or
multiple ways in which the agent can support the user: for instance,
instructions of when and how to produce a reminder, initiate a con-
versation, monitor some environmental variable, or ask what is going
on. However, we do not discuss these in this paper.

In what follows, A is an ABM, τ is a Trigger, g, g′ are Goals, and α
is an Action (all from A). We consider Desired Habits of three types:

next-Desired Habits are structures of the form 〈τ, g, g′〉, where
next(g, g′) is part of the Goal Base of A. This Desired Habit
type formalizes the user’s desires concerning her toplevel goal se-
quences. When she talks about what she should or would prefer
to habitually do after doing something else, HabInt will formalise
that as a next-Desired Habit.

conc-Desired Habits are structures of the form 〈τ, g, g′〉, where
conc(g, g′). This Desired Habit formalizes habit change desires
concerning the way the user achieves some goal (i.e. her conc-
retisation patterns). conc-Desired Habits formalise, for example,
the user’s desired habitual way of achieving some toplevel Goal.

Action-Desired Habits are structures of the form 〈τ, g, α〉, where
there is some activity A = 〈l, g, Act〉 in A’s Activity Base with
α ∈ Act. If the user wishes to change the actions she habitually
performs as part of carrying out some Activity, that will be for-
malised as an Action-Desired Habit.

In a similar fashion we introduce undesired behaviours or the
habits which the user wants to drop. We call them Undesired Habits.
They are also expressed in Lamd but stored in a different set, Undhab.
Each Undesired Habit encodes the user’s desire to habitually not en-
act a behaviour (in some way) or perform an action (given some

1

2 3
4

5

next
conc

Figure 4. An example Goal structure. The Goal 1 has two concretisations,
2 and 3 . Also, after achieving 1 , the user can try to achieve either 4 or 5 .

Trigger). The only constraint we impose is that Undhab and Dhab

be disjoint, for obvious reasons.

Definition 8 (Desired Habits and Undesired Habits of the ABM)
Given an ABM A = 〈V,G,A,C,T, prob, t〉, the set of Desired
Habits is Dhab ⊆ Ldhab, and the set of her Undesired Habits is
Undhab ⊆ Ldhab, where (g, g′ are Goals in G, τ ∈ T and α ∈ C):

Ldhab := 〈τ, g, g′〉 | 〈τ, g, α〉

With the difference between next- and conc-Desired Habits in
mind, we can clarify their intended semantics by specifying the con-
ditions under which they can be said to be complied with. A Desired
Habit points out a behaviour which should be habitual under some
trigger; hence a Desired Habit is complied with when that behaviour
is indeed a habit (under that trigger). Similarly, a Undesired Habit is
complied with when the corresponding behaviour is not a habit.

Definition 9 (Compliance) Given a habit threshold t and an ABM

A, we say that A complies with

〈τ, g, g′〉 ∈ Dhab iff prob(g′|τ, g) > t (2)

〈τ, g, α〉 ∈ Dhab iff prob(α|τ, g) > t (3)

〈τ, g, g′〉 ∈ Undhab iff prob(g′|τ, g) < t (4)

〈τ, g, α〉 ∈ Undhab iff prob(α|τ, g) < t (5)

Based on the known Triggers, HabInt keeps track of what behaviours
the user wishes to change and stores them in its Dhab and Undhab.
The Dhab, Undhab and ABM constitute the DBM.

Definition 10 (Desired Behaviour Model) Given the ABM A, the
Desired Habits Dhab, and the Undesired Habits Undhab, the Desired
Behaviour Model is 〈A, Dhab, Undhab〉.

[Behind the scenes of S5] Initially, Undhab is empty. How-
ever: Dhab = {〈true, ‘at work’, ‘biked’〉}, because Alice originally
wanted to form the habit of biking to work.

When Alice changes her mind, Hal firstly has to move
〈true, ‘at work’, ‘biked’〉 from Dhab to Undhab. Then, Hal formal-
izes Alice’s desire to drive to work as the conc-Desired Habit:
〈‘rain’, ‘at work’, ‘drove’〉 and adds it to Dhab. Now Hal knows:

Dhab = {〈true, ‘at work’, ‘drove’〉} (6)
Undhab = {〈true, ‘at work’, ‘biked’〉} (7)

Since Alice now also wants to drop the habit of “getting the raincoat”
as she leaves for work (an Action α = [‘get raincoat’: ‘at home’
‘has raincoat’]), Hal has to further update Undhab to:

Undhab = {〈true, ‘at work’, ‘biked’〉, 〈true, ‘at work’, α〉}

Other types of Desired Habits could in principle have been de-
fined. For example, looking at Figure 4, one may wish to express
Dhab(true, 2 , 5). It could be read as requesting to form a habit
of “instead of doing 1 by means of 2 , stop doing 1 altogether and
start doing 5 instead”. But this is rather convoluted, and we see little
added value. Rarely we say things like: “if you see me go to work
by bike, remind me I should stay home instead”. For similar reasons
also the other possible Dhab-types require more far-fetched interpre-
tations. So, we will not discuss them further.

5 Violation, anomaly, and inconsistency monitor
The structures we have described so far capture (un)desired habits,
one-off behaviours, existing habits, and also the user’s values, and all
can be at odds with one another. Hence many types of conflict can be
expressed in their language. Here we describe three: the most crucial
ones to monitor for habit support. Namely we show that, given the
DBM and ABM, HabInt can monitor whether an actual behaviour is
anomalous, inconsistent with the user’s value-based preferences or
whether it violates an existing Desired Habit. The examples point
out how HabInt’s monitoring module can check the user’s ABM and
DBM for such conflicts (all examples refer to Figure 4).

behavioural anomaly: when the user does something unusual (or in
an unusual way). For example, when hab(τ, 1 , 5), but the agent
believes that the user is now doing 4 instead of 5 .

When a behavioural anomaly is detected, HabInt can e.g. be in-
structed to investigate, remind the user of her habitual behaviour, or
alert a supervisor. The ABM knowledge alone is sufficient for ex-
pressing this anomaly. Both ABM and DBM are needed, on the other
hand, to express the following state of violation: when a Desired
Habit is not a habit (or vice versa, when an Undesired one is).

〈τ, g, g′〉 ∈ Dhab ∧ 〈τ, g, g′′〉 /∈ Dhab ∧ 〈τ, g, g′′〉 ∈ hab

undesired behaviour: when the user does something (in a way) she
declared she does not want to (or should not). For example, if
〈τ, 1 , 4 〉 ∈ Dhab ∧ 〈τ, 1 , 5 〉 /∈ Dhab, but the agent believes that
the user habitually does 5 after 1 , when τ .

When undesired behaviour is detected, this means that the user is
doing something she declared she wanted support in not doing (or
vice versa). Many kinds of support can be associated with violations
of this type. For example the user may ask to be reminded of the
values she invoked when she set the Desired Habit she is about to
violate or to talk once more about the consequences of her behaviour.
The same holds for one-off behaviours in place of habits.

Furthermore, using the notions introduced in § 3.3, HabInt can
reason about which Values are affected by an Activity and know, for
example, if an Activity A for the goal g demotes the user’s most
important values: ∀v(6 ∃v′(v C v′)⇒ pro∗(A, v) = ↓)

If the user mentions that she is carrying out A, or 〈τ, g′, g〉 ∈
Dhab, then her HabInt will detect a value inconsistency:

value inconsistency: when the user’s Actions, Activities, or
(Un)Desired Habits are not in line with her preferences. For
example, when an Action demotes an important Value.

[Behind the scenes of S6] When Hal perceives Alice smoking, its
behavioural anomaly handling would instruct it to ask: “what is going
on?”. But at the same time, Hal thought that Alice disliked smoking,
“because smoking demotes ‘health’”, so this also categorises as an un-
desired behaviour (i.e. she might be falling into old bad habits) and
has to be dealt with differently. So Hal asks instead: “is everything all
right?” When Alice tells Hal: “I want to start smoking. Every day after
lunch, for a start.”, then Hal will have to handle a value inconsistency:
either ‘health’ is not that important (any more), or maybe the user has
forgotten the values behind her previous choice.

For HabInt, anomalies, violations and inconsistencies mean either
that the user is in trouble, or that its information is outdated. If an
undesired behaviour violation is detected, then a sought-for habit
change process may not be going smoothly, and the agent can e.g.

deliver a warning, as previously instructed by the user. The value in-
consistency type of anomaly can be a symptom of inconsistencies
in the user’s motivation/intention/action structure, or irrational be-
haviour. To find out which one it is, HabInt can be instructed to ini-
tiate communication with the user.

6 Related work

Research on human-computer interaction has explored many ways
in which technology can be used to aid behaviour change (e.g. [25])
and support habit formation and breaking. In contrast with these ap-
proaches, our focus is not on the psychological aspects of behaviour
change in a specific domain and how to support this through tech-
nology. Rather, our conception of HabInt is as an extended mind of
the user: we focus on developing generic knowledge structures that
allow a HabInt to represent and construct user habits in a way that
corresponds to the her conception of her activities.

The field of Activity Recognition has developed machine learning
approaches to deduce what an observed human being is doing (and
her behavioural patterns too), based on raw sensor data. For exam-
ples and further references, see [25, 11, 20]. These techniques will
be used in the monitoring component, to update the prob function
and automatically determine what the user is doing. This reduces the
amount of information we need to get directly from the user. Re-
search such as [8, 10] on (often neural network-like) learners that
mimic the acquisition and monitoring of routine sequential action in
humans is related, but does not satisfy most of the requirements of § 2
due to its different purpose. Our knowledge structures are at a higher
level of abstraction, and capture the relations between activities as
well as their motivations to enable user support on the basis of these
higher-level concepts. However, the prob-based transition system is
inspired to Markov Models [13].

Another area has investigated agents that form habits and routines
of their own (see for example [2, 15]). Instead, our interest is in an
agent that supports a human user in dealing with her habits. Knowl-
edge structures oriented towards habit-learning agents need not be
shared or explainable, and consequently the models are not explicit.

The challenge of developing support agents capable of dynami-
cally interacting with humans in complex environments is not new
(e.g., [4, 6, 37]). We share with them the general vision of a support
agent, but the domain of support for dealing with individual habits
was still unexplored. Secondly, while existing support agents in this
tradition build on the notion of an agent whose primary goal is to take
over some of the tasks a human has, the HabInt we propose has no
such purpose. As a consequence, we face some different issues. For
example, the issue of Adjustable Autonomy, as in [22], disappears,
because HabInt does not take over human tasks or responsibilities
but simply automates some of them when requested. On the other
hand, the question of how to time the interventions remains.

In the area of multi-agent systems, knowledge structures for the
representation of goals and actions have been extensively studied
(e.g. [7]). In this paper we show how such structures can be used
as a basis for the representation of habits. In future work we will in-
vestigate to what extent BDI languages can be used as a basis for
implementing HabInt. A difference between HabInt and BDI agents
is that agents execute plans themselves while HabInt represents a
user’s goals and activities in order to support the user in executing
them. Thus a core challenge towards HabInt’s development will be
to study how to these knowledge structures can be constructed in in-
teraction with the user, and to develop further notions and reasoning
techniques for habit support on their basis.

7 Discussion

The literature agrees on habits being no longer consciously goal-
oriented: awareness of the goal has been lost in the process of habit
formation and is no longer an explicit motive, but at most a latent
justification. While in other situations the motive needs to be present
in order to motivate action, habitual behaviours often lose sight of
the motives as soon as they are no longer needed.9 Clearly, turn-
ing carefully deliberated-upon choices into habits is a value-driven
endeavour of its own, since in so doing we free up time and effort-
consuming deliberations by crystallising them into automatic cue-
response mechanisms (e.g. [21]). But by obscuring the values the
behaviours’ goals used to promote or demote, the process of habit
formation risks making us blind to better choices and pitfalls alike.
HabInt can help to counter this phenomenon by recording explicit
representations of the values that are promoted or demoted by cer-
tain behaviours. The habit-formation process weakens awareness of
how actions affect values and how values motivate goals (cfr. Figure
3) HabInt can help to close the loop, so that the values that are the
motivation and purpose of habitual behaviour can be made visible
again, revealing perhaps its normative aspects.

The dictionary definition of the word norm ([1]) includes: a) A
principle of right action binding upon the members of a group and
serving to guide, control, or regulate proper and acceptable be-
haviour b) A widespread or usual practice, procedure, or custom.

This paper focuses on habits, which fall under the second meaning
of norm. We find it interesting that habits often conflict with norms
of the first kind (e.g. see [28]), abiding by which often requires con-
scious effort and self-control. This is at odds with the absent-minded,
automatic way we carry out our daily routines. We believe that the
common ground of both meanings of norm can be found in values.

We also remark that the link between the two kinds of norms is
even stronger than it may initially seem when observed under the per-
spective we have outlined in this paper. HabInt has a model of what
is actually the case, the ABM, and a model of what should be the case,
the DBM, which is the user’s own idea of a better self (one that wakes
up in time, brushes her teeth, etc...). This idea echoes the normative-
descriptive dichotomy of economists and psychologists ([26, 3]) on
which deontic logics can be built, as shown e.g. in [14].

8 Conclusion and future work

While performing habitual behaviours is characteristically easy,
forming and breaking habits can be difficult. Our aim is to develop a
HabInt agent that is able to support humans in such efforts. We con-
ceive of such an agent as an extended mind of the user. In this paper
we have presented the foundations for developing this agent by out-
lining the vision and requirements, as well as providing knowledge
structures for performing the necessary reasoning and support tasks.
A case study illustrates the envisaged use of the framework.

The knowledge structures model habits on the basis of a represen-
tation of goals, activities and actions relevant to the user. The paper
shows how these concepts can be linked to personal values which is
essential for helping the user to choose desired behaviours that are
in line with her underlying motivations. We have put forward the no-
tion of a desired behaviour model as the basis for supporting a user in
modifying habits. We have proposed several types of non-compliance
based on the actual and desired behaviour models which can be used
by the HabInt to monitor whether the user’s actual behavior is in line

9 This is a simplification: see [34] for a more complete account.

with her desired behavior. In this way, HabInt will be able to deter-
mine when and how to give the user timely advice.

A key feature of HabInt is that it adheres strictly to the user’s vo-
cabulary for expressing goals, activities, actions and values, and that
the fine-grainedness of the concretisation relation and of the actions
involved in the user’s activities are tailored to the user’s needs. If a
reminder to “go by bike” is enough for the user to know what to do,
then no additional information is stored by HabInt.

In future work we intend to investigate the resemblance to David
Lewis’ perfect worlds semantics for deontic logic. We would like
to study whether deontic logic techniques would allow the type of
reasoning needed to differentiate between actual behaviours, already
formulated desired behaviours, and tentative attempts of the user to
formulate her actual or desired behaviours.

The current model does not address the temporal dimension of
habits. As timely interventions are crucial, the temporal aspects will
be addressed in a future paper. Furthermore, here we defined prob as
a probability function, whereas we would like HabInt to reason qual-
itatively, using notions such as ‘always, often, at least biweekly...’.
This challenge is to be addressed in future work, as will the other
components of the agent architecture, the implementation and the
verification of the validity, scalability and robustness of the approach.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions.

References
[1] http://www.merriam-webster.com/dictionary/. [accessed 15-05-2016].
[2] Philip E. Agre, ‘The dynamic structure of everyday life’, Technical re-

port, MIT, (1988).
[3] David E. Bell, Howard Raiffa, and Amos Tversky, eds. Decision Mak-

ing: Descriptive, Normative, and Prescriptive Interactions. Cambridge
University Press, 1988.

[4] V. Bellotti, B. Dalal, N. Good, P. Flynn, D.G. Bobrow, and N. Duche-
neaut, ‘What a to-do: Studies of task management towards the design of
a personal task list manager’, in Proceedings of CHI’04, pp. 735–742,
(2004).

[5] Trevor J.M. Bench-Capon, ‘Persuasion in practical argument using
value-based argumentation frameworks’, Journal of Logic and Com-
putation, 13(3), (2003).

[6] P. Berry, K. Conley, M. Gervasio, B. Peintner, T. Uribe, and N. Yorke-
Smith, ‘Deploying a personalized time management agent’, in Proceed-
ings of AAMAS’06, pp. 1564–1571, (2006).

[7] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah
Seghrouchni, Multi-Agent Programming: Languages, Tools and Appli-
cations, Springer, Berlin, 2009.

[8] Matthew M. Botvinick and David C. Plaut, ‘Doing without schema hi-
erarchies: A recurrent connectionist approach to normal and impaired
routine sequential action’, Psychological Review, (2004).

[9] Andy Clark and David Chalmers, ‘The extended mind’, Analysis, 58(1),
7–19, (1998).

[10] Richard P. Cooper, Nicolas Ruh, and Denis Mareschal, ‘The goal circuit
model: A hierarchical multi-route model of the acquisition and control
of routine sequential action in humans’, Cognitive Science: A Multidis-
ciplinary Journal, (2013).

[11] Thi V. Duong, Hung H. Bui, Dinh Q. Phung, and Svetha Venkatesh,
‘Activity recognition and abnormality detection with the switching hid-
den semi-markov model’, in CVPR 2005 : Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 838–845, (2005).

[12] Kerry Fairbrother and James Warn, ‘Workplace dimensions, stress
and job satisfaction’, Journal of Managerial Psychology, 18(1), 8–21,
(2003).

[13] Shai Fine, Yoram Singer, and Naftali Tishby, ‘The hierarchical hidden
markov model: Analysis and applications’, Machine Learning, (1998).

[14] Holly S. Goldman, ‘David Lewis’ semantics for deontic logic’, Mind,
86(342), 242–248, (1977).

[15] Henry H. Hexmoor, Representing and Learning Routine Activities,
Ph.D. dissertation, New York State University, 1995.

[16] Clark L. Hull, Principles of behavior: an introduction to behavior the-
ory, Appleton-Century, 1943.

[17] Catholijn M. Jonker, M.Birna van Riemsdijk, and Bas Vermeulen,
‘Shared mental models - a conceptual analysis’, in Proceedings of the
9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), ed., van der Hoek, (2010).

[18] Model of Human Occupation: Theory and Application, ed., Gary Kiel-
hofner, Lippincott Williams & Wilkins, 2008.

[19] Ariel Knafo and Shalom H. Shwartz, Cultural transmission: Psycho-
logical, developmental, social, and methodological aspects, chapter
Accounting for parent-child value congruence: Theoretical considera-
tions and empirical evidence., 240–268, Culture and psychology, Cam-
bridge University Press, 2009.

[20] Óscar D. Lara and Miguel A. Labrador, ‘A survey on human activity
recognition using wearable sensors’, IEEE Communications Surveys
and Tutorials, 15(3), 1192–1209, (2013).

[21] Eva Lindbladh and Carl H. Lyttkens, ‘Habit versus choice: the pro-
cess of decision-making in health-related behaviour’, Social Science &
Medicine, 55(3), 451–465, (August 2002).

[22] David V. Pynadath and Milind Tambe, Socially Intelligent Agents, vol-
ume 3 of Multiagent Systems, Artificial Societies, and Simulated Orga-
nizations, chapter Electric Elves: Adjustable Autonomy in Real-World
Multi-Agent Environments, 101–108, Springer, 2002.

[23] Meg J. Rohan, ‘A rose by any name? the value construct’, Personality
and Social Psychology Review, 4(3), 255–277, (2000,).

[24] Neil S. Jacobson, Christopher R. Martell, and Sona Dimidjian, ‘Behav-
ioral activation treatment for depression: Returning to contextual roots’,
Clinical Psychology: Science and Practice, 8(3), 255–270, (September
2001).

[25] Katarzyna Stawarz, Anna L. Cox, and Ann Blandford, ‘Beyond self-
tracking and reminders: Designing smartphone apps that support habit
formation’, in CHI ’15: Conference on Human Factors in Computing
Systems, Seoul, Republic of Korea, April 18 - 23, 2015., pp. 2653 –
2662, (2015).

[26] Carroll U. Stephens and Jon M. Shepard, Wiley Encyclopedia of Man-
agement, chapter Normative/Descriptive.

[27] John Thangarajah, Managing the Concurrent Execution of Goals in In-
telligent Agents, Ph.D. dissertation, Royal Melbourne Institute of Tech-
nology, 2005.

[28] David Trafimow, ‘Habit as both a direct cause of intention to use a con-
dom and as a moderator of the attitude-intention and subjective norm-
intention relations.’, Psychology and Health, 15, 383–393, (2000).

[29] Frank Trentmann, Time, Consumption and Everyday Life: Practice,
Materiality and Culture, chapter Disruption is Normal: Blackouts,
Breakdowns and the Elasticity of Everyday Life, Berg, 2009.

[30] M. van Lent, W. Fisher, and M. Mancuso, ‘An explainable artificial
intelligence system for small-unit tactical behavior’, in Proc. of the Six-
teenth Conference on Innovative Applications of Artificial Intelligence,
(2004).

[31] M.Birna van Riemsdijk, Catholijn M. Jonker, and Victor Lesser, ‘Cre-
ating socially adaptive electronic partners’, in Proceedings of the 14th
International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2015), (2015).

[32] Bas Verplanken, ‘Beyond frequency: Habit as a mental construct’,
British Journal of Social Psychology, 45, 639–656, (2006).

[33] Wietske Visser, Koen V. Hindricks, and Catholijn M. Jonker,
‘Argumentation-based qualitative preference modelling with incom-
plete and uncertain information’, Group Decision and Negotiation, (1),
99–127, (2012).

[34] Wendy Wood and David T. Neal, ‘A new look at habits and the habit-
goal interface’, Psychological Review, 114(4), 843– 863, (2007).

[35] Wendy Wood and Dennis Rünger, ‘Psychology of habit’, Annual Re-
view of Psychology, (2015).

[36] Wendy Wood, Leona Tam, and Melissa Witt G., ‘Changing circum-
stances, disrupting habits’, Journal of Personality and Social Psychol-
ogy, (2005).

[37] Neil Yorke-Smith, Shahin Saadati, Karen L. Myers, and David N. Mor-
ley, ‘The design of a proactive personal agent for task management’,
International Journal on Artificial Intelligence Tools, 21(1), (2012).

“How Did They Know?” — Model-checking for
Analysis of Information Leakage in Social Networks

Louise A. Dennis1, Marija Slavkovik2, and Michael Fisher1

1 Department of Computer Science, University of Liverpool
2 Department of Information Science and Media Studies, University of Bergen

Abstract. We examine the use of model-checking in the analysis of information
leakage in social networks. We take previous work on the formal analysis of
digital crowds and show how a variation on the formalism can naturally model the
interaction of people and groups of followers in intersecting social networks. We
then show how probabilistic models of the forwarding and reposting behaviour of
individuals can be used to analyse the risk that information will leak to unwanted
parties. We illustrate our approach by analysing several simple examples.

1 Introduction

Can we use formal verification to check whether the privacy settings for accessing
posted content in social media are effective? In this work we make the first steps to-
wards answering this question in the positive.

The proliferation of social network services has made it possible for vast amounts
of contributed content to be shared online by users who simultaneously are members
of more than one social network service (SNS). Consider, for simplicity, one SNS user;
let us call him Bob. Most social network services allow for various privacy settings
to be specified, which should allow Bob to control who can access or, further propa-
gate, the content he contributes. We say “should allow control” instead of “does allow
control” because, in reality, it is not Bob’s privacy settings that ultimately determine
accessibility to his shared content, but the combination of the privacy settings of Bob
and the privacy settings of all of the users to whom Bob has allowed access to his shared
content, i.e., Bob’s followers. In the same vein let us call Bob’s followees all the users
who have allowed access to their shared content to Bob. What is worse with respect to
Bob’s control over the privacy of his shared content, is that many of his followers may
be users of more than one SNS, with automated interfacing set to synchronise their ac-
tivities among all the mediums either because one social network allows direct linkage
with the API of another (e.g., Livejournal3 allows posts to be automatically reposted
as a link to Facebook4) or via third party synchronisation services such as IFTTT5 and
Zapier6 which allow users to create customised rules to link their SNS accounts to each

3 livejournal.com
4 facebook.com
5 ifttt.com
6 zapier.com

livejournal.com
facebook.com
ifttt.com
zapier.com

other (and often to additional services and devices such as home automation tools, cal-
endars, alerts and emails). It is thus very difficult for Bob to track information leakage
– information that Bob shares with his followers, but reach other agents who are not
directly authorised to share it. We give a very simple example of information leakage.

Let Bob and his friend Cathy both be members of social network service SN1. Cathy
and Bob are within each others networks on SN1, meaning they are both each other’s
followers and followees. In turn Bob’s boss, Jim, is neither a follower nor a followee
of Bob. Bob regularly posts content on SN1 and has chosen to make his content visi-
ble only to his followers, believing that his boss cannot access them. Bob makes really
sure of this, he checks Cathy’s followers and makes sure Jim is not among them. How-
ever Cathy and Jim are within each others networks on SN2 and Cathy automatically
synchronises her posts between these two SNSs. Bob, having a hard day, complains
about his boss on SN1. Cathy, sympathising with Bob acknowledges Bob’s message
thus making it visible to her followers on SN1, but due to her content synchronisation
with SN2, Bob’s message becomes also visible to Cathy’s followers on SN2. As a result
Jim finds out what Bob really thinks of him and rescinds his planned promotion.

It is not simple for one user such as Bob to keep track of all possible combinations
of privacy settings within his network and their ultimate effect on content accessibility.
Therefore we propose that this task of checking the effective content visibility, i.e., that
no information leakage has occurred, should be automated. As a possible means to
accomplish such automation, we propose formal verification. Our ambitions aim is to
make it feasible for social network services to regularly model-check [4] user settings
to ensure that the content privacy settings are effective and efficient, although we are
aware that this is a very hard theoretical and engineering problem.

Formal verification is the process of establishing, typically via techniques based
on formal logic, that a designed system has its intended properties. Such approaches
have become widespread, enabling deep and (semi) automated formal analysis of both
software and hardware systems so providing greater clarity concerning reliability and
correctness. While logical proof techniques can be used, it is exhaustive state-space ex-
ploration, in the form of model-checking [4], that is the predominant approach. As we
wish to formally model SNSs, our aim here is to utilise formal verification tools to au-
tomatically verify their behaviour. In particular, we wish to establish formal properties
concerning information leakage using automatic model-checking systems.

Consequently we begin, in §2 and §3 by considering the general class of systems and
a specific formal model for these based on similar work for namely digital crowds [18]
Indeed, the formal model here provides a simplification of that in [18] in that agents
have much more limited capabilities. We then consider how model-checking can be
used to analyse information leakage properties within this framework. This we do in
§4, utilising the PRISM probabilistic model-checker [10]. Finally, in §5, we provide
concluding remarks, incorporating both related and future work.

2 System Representation

A rational agent is an agent that is capable of obtaining information about her envi-
ronment, including other agents, and using this information to select actions in order to

achieve her goals [20]. A multi-agent system (MAS) is a system of agents that share the
same environment and can cooperate or compete within it, as well coordinate their ac-
tions. A system of social network services (SNSs) and their users is not a “traditional”
MAS, foremost because the networks are not considered to be agents. We propose that
since the SNS does obtain information about the users it hosts, and adapts its services
and information to the particular needs of specific users, it can be modelled as a rational
agent. We use the catch-all phrase “social agent” to refer to both SNSs and their users.
We now discuss how to represent a social agent, so that we can formally analyse her
properties.

A rational agent can be represented by representing her mental attitudes, in par-
ticular her dynamic, informational and motivation aspects. This is exemplified by the
popular BDI paradigm for representing agents via mental attitudes [16, 15]. “BDI” de-
notes Beliefs, Desires, and Intentions. In terms of the analysis of information leakage
we are primarily interested in the informational aspects of rational agency and so in
what follows we will ignore the issue of an agent’s desires and intentions7.

As flexible and powerful as the BDI paradigm is, it is not completely suited for
representing social agents since the mental attitudes of these agents, particularly if they
are a SNS, are not available or they may not be visible. E.g., a SNS may not have
access to what Bob truly believes about his boss, only to what Bob has posted about his
boss. Bob can know who Cathy’s followers are on the SNS they share, but not on the
SNSs they do not have in common. For reasons such as these, work in [18] introduces
a new mental state, the communicational attitudes to describe the information about
herself an agent shares with the world; MÒiϕ is used8 to describe that the modelled
agent has communicated ϕ to i, while MÓiϕ is used to describe that the modelled agent
has received communication ϕ from agent i. An agent can be modelled by only using
communicational attitudes, when nothing of the private beliefs or goals of the agent
is known. The agent representation in [18] builds upon formal agent organisational
structures introduced in [8] and further studied in [7, 9]. An extended agent, as given
in [8], is one for which in addition to the specification of the agent’s mental attitudes,
two further sets are added, content and context, allowing for both simple agents and a
system of agents to be represented using the same model. An extended agent, as defined
in [7, 9], can further include an agent’s specification that is visible, or accessible, to the
agent’s content or context respectively. This paradigm of extended agents is particularly
suitable for modelling the visibility of posted content. We thus arrive at our model of a
social agent, we use the content to represent the followers of a user and the context to
represent the user’s followees.

The model of a social agent is given in Fig. 1. The mental attitudes of the social
agent are private and it is not necessary to include any information in this agent part
in order to specify a social agent. The information the agent shares is accessible to the
agents that are her followers. The followers also have access to information about who
else follows the modelled social agent. Information received from a followee is naturally

7 Though note that these could be included.
8 In [18], the formulas MÒiϕ and MÓiϕ have also subscripts that denote the nature of the com-

munication, i.e., whether it expresses a question, a statement, or an order, but we here only use
statements and thus omit subscripts.

accessible to the agent who posted that information. If an agent A1 is followed by an
agent A2, then A2 can know who else A1 follows.

Agent

Mental attitudes

Private
Public for followers

Public for folowees

Sent information

Follower agents

Received information

Folowee agents

Fig. 1: Basic structure of an extended agent.

Using this social agent structure, we can construct a model for the simple information
leakage example outlined in §1. This model is given on Fig. 2.

3 Formal System Specification

The systems we need to specify are the SNS and their users. We represent both networks
and users as extended agents using a simplification of the extended agent representation
given in [18]. In [18], additional modalities were used to express language abilities as
well as the type of the message that the agent sends or receives, linguistic structures that
we do not have need for here.

LetAgt be a set of unique agent identifiers, let Prop be a set of atomic propositions
and constants, and Pred be a set of a first-order predicates of arbitrary arity. We begin
by defining a language Lp to be a set of grounded first order logic formulas without
function symbols, namely the set of all ϕp such that

ϕp ::“ p | ϕp | ϕp ^ ϕp | P px1, . . . , xmq

where p P Prop, P P Pred and x1, . . . , xm P Agt.
Depending on the specific needs for a specification, different BDI operators can be

used but, for demonstrating our specification approach, we use only the modal operator
B which denotes the agent’s informational attitudes.LBDI is then the set of all formulas
ϕ such that

ϕ ::“ ϕp | ϕ | ϕ^ ϕ | Bϕp

Cathy’s

Mental attitudes

Bob’s SN1

Bob’s

Mental attitudes

Private

Public for followers

Public for folowees

Sent information

Cathy’s SN1

Received information

Cathy’s SN1

Private
Public for followers

Public for folowees

Sent information

Bob’s SN1, IFTT

Received information

Bob’s SN1

Cathy’s SN2

Folowees

Jim’s

Mental attitudes

Private

Public for followers

Public for folowees

Sent information

Cathy’s SN2

Received information

Cathy’s SN2

Jim’s SN2

Public for followers

Public for folowees

Sent information

Jim’s SN2

Received information

IFTT, Jim’s SN2

Fig. 2: A system of social agents

where ϕp P Lp.

Finally, we define the language for specifying communication among agents, LM .
For this language we add operators to indicate the sending and receiving of messages
and probabilities. The language LM is the set of all formulas θ such that

θ ::“ ϕ |MÓjϕ |MÒjϕ | θ | θ ^ θ

where i, j P Agt and ϕ P LBDI . In [18], temporal information can be included in
message formulas but we ignore that possibility here.

The messages are sent to an agent j, however either the context set CX or the
content setCN as a whole can be the target of message broadcast (in the general model,
both are agents). We use the shorthand9

MÒCNϕ ”
ľ

jPCN

MÒjϕ, MÒCXϕ ”
ľ

jPCX

MÒjϕ.

The language LBDI restricts the nesting of modal operators, while LM forbids the
use of BDI operators outside of the scope of a message operator and does not allow
nesting ofM operators. Nested messages express meta communication, allowing agents
to communicate about what was communicated to them or by them. However, such
nesting is not meaningful in our work here.

We can now give the following definition of an agent.

Definition 1. Let Agt be a set of unique agent identifiers. An agent is a tuple
xID , Bel, Com,CN,CXy, where ID P Agt is a unique agent identifier, Bel Ă Lp

is the set of beliefs the agent holds about the world, Com Ă LM is the set of messages
the agent has received and sent, CN Ă PpAgtztIDuq is the set of agents contained
and lastly CX Ă PpAgtztIDuq is the set of agents in which the agent is contained,
i.e., its set of contexts. The set Bel is consistent and simplified.

Given an agent i P Agt, an agent specification is a set SPEC piq Ă LM , where Bϕ
is true iff ϕ P Bel, cnpjq is true iff j P CN , cxpjq is true iff j P CX and MŒiϕ is true
if MŒiϕ P Com.

Lastly when specifying the behaviour of a system we combine probabilistic and tempo-
ral operators.

ϕ ::“ P“nθ | θ | ϕUϕ |©ϕ | ♦ϕ

where θ P LM , 0 ď n ď 1 and ϕ P LBDI . In the intuitive interpretation of our
probabilistic operator: P“nθ means that there is a probability of n that θ is true. For
our temporal logic operators pUq means that p is continuously true up until the point
when q becomes true; ©r means that r is true in the next moment in time; while ♦s
means that s will be true at some moment in the future. Note that temporal operators
can not be nested within the probabilistic operator which, therefore, refers only to the
probability of messages being sent or formulas in LBDI becoming true.

Finally, we assume, via (1), that if a message is sent then it will eventually be re-
ceived. This is a property of communication among agents that should hold in the envi-
ronment, for communication to be meaningful.

Di,MÒjϕ P SPEC piq ñ Dj,♦MÓiϕ P SPEC pjq (1)

Note that we do not develop an axiomatisation for LM and do not intend to prove
soundness for this language, because we aim ultimately to use it to create specifica-
tions for model checking, where soundness is not necessary. The above, together with

9 Note: We define the messages with individual agents, not sets as in [8, 7, 9], because a message
can be broadcast to many agents, but it can be sent from one agent, otherwise the sender
is unknown, which cannot happen here — if your contexts sends you a message it is from
exactly one context.

standard modal and temporal logic semantic structures [19], provides a formal basis for
describing agents and SNSs, communication and, hence, behaviour.

In order to consider communication among social networks, let us define the con-
cept of reachability between two agents i and j. The agent i can reach agent j if, and
only if, a message sent from i is eventually forwarded to j, under the assumption that
the relevant contexts relay messages from one of their content agents to the rest of the
content. Of particular interest in the analysis of information leakage are relaying con-
texts. Intuitively, a relying context is an agent which broadcasts to all its content agents
all messages received from one of his content agents.

Definition 2. Let i be an agent s.t.CNpiq ‰ H. Agent k P CXpiq is a relaying context,
and RELpkq is true, when all the messages sent to k are sent on to all of the content
agents of k:

ppCNpiq _ CXpiqq ^MÓiϕq ÑMÒCNϕq P SPEC pkq

To show that information leakage to agent j does not happen to content posted by agent
i we need to show that SPEC piq satisfies property (2):

 ♦pMÒCNϕ^ CNpjqq ÑMÓjϕqq (2)

Recall that CN are the followers of i, while CX are her followees. The property (2)
states that it is not possible that what is posted to followers of i can be received by j
who is not among i’s followers.

Upon this basic framework we will now consider formal verification of key prop-
erties. To explain this, we will work through a relatively simple series of examples,
showing the properties that can be formally established via model-checking.

4 Model Checking Information Leakage

PRISM [10] is a probabilistic symbolic model-checker in continuous development since
1999, primarily at the Universities of Birmingham and Oxford. Typically a model of a
program (or in our case a network of agents) is supplied to PRISM in the form of a prob-
abilistic automaton. This can then be exhaustively checked against a property written
in PRISM’s own probabilistic property specification language, which subsumes several
well-known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
PRISM has been used to formally verify a variety of systems in which reliability and un-
certainty play a role, including communication protocols, cryptographic protocols and
biological systems [14]. In this paper we use PRISM version 4.1.beta2.

PRISM is an attractive option for modelling agents and social networks in our for-
malism since its probabilistic aspects allow us to reason not only about which messages
are definitely sent and received, but also about the chance, or risk, that information
leakage may occur.

We use a simple set of examples in order to illustrate our approach.

4.1 Basic Scenario

Alice, Bob, and Charlie share two social networks, SN1 and SN2. Alice is a follower
of Bob on SN1 but Charlie is not. Charlie is a follower of Bob on SN2 but Alice is
not. We treat all three agents, Alice, Bob and Charlie as modules in PRISM. Following
our formalism we also treat the followers of Bob on the two networks as agents and
so also as PRISM modules. The followers of Bob on SN1 and SN2 are both ‘relaying’
contexts as defined in Definition 2 – i.e. all information from one content member is is
automatically transmitted to all other content members.

The syntax of prism commands is [?label] guard -> prob 1:update 1
+ ...+ prob n:update n where label is an optional keyword used for syn-
chronisation, guard is a logical formula over the values of global and local variables,
prob 1 to prob n are probabilities which sum to 1 and update 1 to update n
specify changes to the global and local variables.

We modelled our scenario as a Discrete Time Markov Chain in PRISM. Therefore
‘->’ indicates a transition from one discrete time step to another. Synchronisation labels
force commands in several modules to make a transitions at the same time.

We show the model for followers of Bob on SN1, SN1Bob, in Fig.3. In this model

module SN1Bob
sn1bob_relays_message: bool init false;

[bobmessagetosn1] bob_sent_message_to_sn1 = true ->
1.0:(sn1bob_relays_message’ = true);

[sn1bobmessage] sn1bob_relays_message = true ->
1.0:(sn1bob_relays_message’ = false);

endmodule

Fig. 3: A PRISM model of Bob’s followees on SN1.

bob sent message to sn1 is a variable in the Bob module that is true if Bob has
sent a message to SN1. sn1bob relays message is a variable in SN1Bob that
is true if SN1 relays a message from bob to all his followees on SN1. SN1Bob con-
tains two PRISM commands, both with synchronisation labels. The first specifies that
if Bob has sent a message to SN1 then, with a probability of 1.0, sn1 will relay the
message. This transition is synchronised with commands in other modules labelled
bobmessagetosn1 (specifically it synchronises with a command in the Bob mod-
ule that sends the message). The second specifies that if sn1 relays a message then a
synchronised transition will take place after which this variable is set to false (pending
receipt of a new message from Bob).

To represent the receipt of messages by Bob’s followers we use the synchronisation
label sn1bobmessage. All the commands with this label in all modules make transi-
tions together. In practice this means all Bob’s followers receive a message in the same
time step. So, for instance, in the representation of Alice in the model, when SN1 relays
Bob’s message she, with probability 1.0, has a message.

[sn1bobmessage] sn1bob_relays_message = true &
1.0:(alice_has_message’ = true);

If there were a second agent, Debbie say, among Bob’s SN1 followers then Debbie
would contain a similar command.

[sn1bobmessage] sn1bob_relays_message = true &
1.0:(debbie_has_message’ = true);

Taken together the synchronised commands in the content agents and the relaying com-
mand in SN1Bob ensure that SN1Bob meets the specification of a relaying context.

4.2 Example 1

In our first, and simplest, example Alice, Bob and Charlie are the only relevant actors
on each network. Bob posts a message to SN1. With the simple model and probabilities
PRISM tells us that there is a probability of 1 that eventually Alice will receive the
message10:

P“1♦MÓsn1bob
tell message P SPECpaliceq (3)

This is expressed as P>=1 [F(alice has message = true)] in PRISM’s prop-
erty specification language.

We can also prove that there is probability of zero that Charlie will eventually know
the message, since the message was relayed only to Bob’s followers on SN1 and not to
those on SN2.

P“0♦MÓsn1bob
tell message P SPECpcharlieq (4)

4.3 Example 2

We now expand our example to consider the addition of a synchronisation agent, SYNC.
Bob has set SYNC up so that when he posts a message to SN1 it is forwarded to the SN2
as if it was Bob doing so. We use a global variable sync sends as bob to represent
that sync can send a message as if it were Bob. When this variable is true then the Bob
module sends the message to SN2 using the command

[] sync_sends_as_bob = true ->
1.0: (bob_sent_message_to_sn2’ = true) &

(sync_sends_as_bob’ = false);

The synchronisation agent is shown in Fig.4.
So, on receipt of a message from Bob by the first network, the SYNC agent forwards it
to SN2 as if it was Bob doing so. Under these circumstances we can use PRISM to show
that the probability that eventually Charlie receives the message is 1.

10 We use the notation P“n to indicate that there is a probability of n that something will occur.

module SYNC
sync_has_message: bool init false;

[sn1bobmessage] sn1bob_relays_message = true &
sync_has_message = false ->

1.0:(sync_has_message’ = true);

[] sync_has_message = true ->
1.0: (sync_has_message’ = false) &

(sync_sends_as_bob’ = true);
endmodule

Fig. 4: PRISM model of a simple synchronisation service

4.4 Example 3

Let us now remove the synchronisation agent and consider the possibility that Bob’s
followers on SN1 may forward the message to their followers. Assume both Alice and
Debbie follow Bob and that Charlie follows both Alice and Debbie. With both Alice
and Debbie there is a possibility of 0.1 that they may forward a message to their own
followers.

@j P talice, debbieu,@i,MÓi
tellϕ P SPEC pjq ñ P“0.1MÒSN1

tell ϕ (5)

The PRISM model for Debbie’s behaviour is shown in Fig.5 (Alice’s module is iden-
tical except for variable names and labels). We also add new synchronisation commands
to Charlie’s model to indicate a receipt of messages from Alice or Debbie’s SN1.

module Debbie
debbie_has_message: bool init false;
debbie_sent_message_to_sn1: bool init false;

[] debbie_has_message = true ->
0.9:(debbie_has_message’ = false)
+ 0.1:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);

[sn1bobmessage] sn1bob_relays_message = true ->
1.0:(debbie_has_message’ = true);

[debbiemessagetosn1] debbie_sent_message_to_sn1 = true ->
1.0:(debbie_sent_message_to_sn1’ = false);

endmodule

Fig. 5: PRISM model for Debbie

In this network PRISM tells us there is a probability of 0.19 that Charlie will even-
tually receive the message having had it forwarded to him by either Alice or Debbie (or
by both of them).

4.5 Example 4

Suppose at the same time that Bob sends his message he requests that it not be reposted.
We view this request as the establishment of a norm and assume this further modifies
the chance that Alice or Debbie will forward the message to 0.01. We represent this by
modifying the behaviour of agents when they have a message as show in figure 6:

[] debbie_has_message = true & do_not_repost_norm = false ->
0.9:(debbie_has_message’ = false)
+ 0.1:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);
[] debbie_has_message = true & do_not_repost_norm = true ->

0.99:(debbie_has_message’ = false)
+ 0.01:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);

Fig. 6: PRISM command showing Debbie’s behaviour when a norm is in place

Under these circumstances, PRISM tells us that the probability of Charlie receiving
drops to 0.0199.

4.6 Example 5

Lastly we combine our various scenarios as follows: Bob is followed by Alice and
Debbie on SN1 and by Charlie on SN2. Debbie and Alice are followed by Charlie
on SN1. Debbie has a synchronisation agent set up on SN2 to forward her message
automatically to SN1. Debbie is not followed by Charlie on SN2. If Bob asks that his
message not be forwarded to Charlie then both Alice and Debbie have a 0.01 probability
of reposting the message to SN1. However there is a 0.09 probability that Debbie will
forward the message to SN2 since Charlie does not follow her there, forgetting that she
has a synchronisation agent set up. In these circumstance the probability that Charlie
receives the message is 0.109, either because Alice or Debbie has forwarded it directly
to SN1, or because Debbie forwarded it to SN2 and then SYNC reposted it to SN1.

4.7 Results Summary

We summarise the results of our examples in the table below, in each case showing the
probability, P“? that Alice, Charlie, Debbie or sync eventually receive Bob’s message.

Example
1 2 3 4 5

P“?♦MÓ

tellϕ P SPEC paliceq 1 1 1 1 1
P“?♦MÓ

tellϕ P SPEC pcharlieq 0 1 0.19 0.0199 0.109
P“?♦MÓ

tellϕ P SPEC pdebbieq n/a n/a 1 1 1
P“?♦MÓ

tellϕ P SPEC psyncq n/a 1 n/a n/a 0.09

5 Discussion

The analyses of information leakage that we have presented assumes that it is possible
to gain some information about the composition of interlinked social networks in or-
der to construct a model for analysis. In particular we assume that we can model the
probability with which a user will forward messages; that we can gather information
about the followers of users on different social networks (and identify users across so-
cial networks); and that we can tell when a user is using a synchronisation agent. We
will briefly discuss each of these assumptions.

How likely is a user to forward a message? A decision made by an individual user over
whether or not to repost a message to their own followers on a Social Network is obvi-
ously highly dependent upon the user, the content of the message, and external factors
such as the time of day. However some work already exists in modelling the chances
that a message becomes disseminated within a social networks [13] so it reasonable to
assume that realistic probabilities could be generated to assess both the risk of messages
in general, and of some specific message being forwarded within a network. Adding in
assumptions about normative behaviour clearly makes such modelling harder however
work also exists in modelling the norms of behaviour on social networking sites [3].

Can we gather information about a user’s followers on different social networks and
identify users across social networks. While some social networks make the list of
a user’s followers public, many do not and this obviously presents considerable diffi-
culty in modelling the intersection of these networks. Moreover, for practical reasons
the depth of exploration — i.e. the number of forwards — will need to be limited for
search reasons. However, it would not be unreasonable to assume a model in which
once a message has been forwarded n times it can count as having “gone viral” and
the information therein has irrevocably leaked. We have not considered this possibility
here. Typically forwarding of messages happens primarily within the network where
the message was generated. In this instance the network itself could choose to offer
information leakage analysis from its vantage point of access to all follower groups.

How can we tell if a user is using a synchronisation agent? The main danger of infor-
mation leakage between networks arises when a user is employing a synchronisation
agent. While it is generally easy to tell if a person you follow on a social network is us-
ing an agent to repost to that network from some other network, it is considerably harder
to tell if they have a synchronisation agent that posts from the network you share to one
that you don’t. It may be that the existence of such agents for other users will need to

be modelled as part of user behaviour. However it is easy to obtain information about
synchronisation agents for a the user wishing to perform a risk analysis. Since users
can easily forget that they have set up synchronisations and the synchronisation rules
they have may interact in unexpected ways, explicit analysis of these agents remains
valuable.

Nevertheless, in spite of the difficulty in gaining accurate probabilistic data for the
behaviour of humans in the social networks we believe that model-checking does pro-
vide a tool which would allow some understanding of the risks of privacy violations and
information leaks in social networks. Services which allowed networks to be evaluated
on a regular basis in order to asses general risk could be of significant value. While only
applied here to very simple examples, we believe the approach described could form the
basis for exactly these services.

5.1 Related Work

To the best of our knowledge, this is the first work considering information leakage in
the general sense as any information shared on a social network service accessible to
persons not directly authorised to access it. Furthermore this is the first attempt to apply
formal verification to determine whether, and how often, information leakage occurs.

“Information leakage” is a term typically used in the context of software engineer-
ing, to denote the event when a software system designed to be closed for unauthorised
parties reveals some information to them nonetheless. In [12] the use of an agent-based
approach to facilitate software information leakage is proposed.

Involuntary information leakage within the context of social network services has
been considered for sensitive information, such as personal data and location. A study
showed that even if people do not directly reveal their personal information in a social
networking service, this may happen indirectly with personal information becoming
either directly accessible or inferable from accessible information [11]. Multi-agent
system (MAS) technology use is proposed in [1] to assess the vulnerability of particular
user profiles on a social network service. Specifically, a software agent is associated
with each user profile to extract the user’s updates and send them to a controller agent
which saves the history of each user and analyses it for possible vulnerabilities.

Logic-based representation of social network service users and their interactions is
an increasing area of research, although work is mainly aimed at studying the informa-
tion diffusion in a social network. In particular, [17] proposes a two-dimensional modal
logic for reasoning about the changing patterns of knowledge and social relationships in
networks. Model-checking as a method for verifying properties of information diffusion
in open networks has been studied in [2]. The authors, however, focus on modelling the
entire (open dynamic agent) network whereas we are modelling a software agent in a
social network service system.

5.2 Further Work

As this paper simply sets out a broad direction, and gives quite simple examples, there
is much further work to be done.

We would be interested in extending our system to look at, for instance, how in-
formation through different routes (e.g. location information sent to one social network
service and information about companions sent to another) can be combined to leak
key information in unanticipated ways (e.g., someone can now know the location of
your companion). Formal verification would surely be more complex but still viable.

The examples we have provided have been built “by hand” and so it would be ad-
vantageous to provide a route whereby (some at least) social networks could be auto-
matically extracted into our formalism.

Finally, we here use a relatively standard model-checker, namely PRISM, as we are
not primarily concerned with anything more than the beliefs of our agents. As we move
to more complex systems it would be ideal to verify complex BDI behaviours. We have
an agent model-checker that is capable of this [6], and indeed this can also be configured
to export models to PRISM [5] if probabilistic results are desired. However, it would
be ideal to enhance the agent model-checker with explicit content/context constructs
in order to facilitate a more direct relationship between our formalism and the model
analysed by the tool than we could achieve via a direct translation into PRISM. This
would also allow for the practical verification of higher-level properties.

Acknowledgments This work was partially funded through EPSRC Grants EP/L024845
(“Verifiable Autonomy”) and EP/N007565 (“Science of Sensor System Software”). The
authors would also like to thank Dagstuhl for their facilities and hospitality, something
that provided the impetus for this work.

Access to Data The PRISM models used in this work will be made available in the Uni-
versity of Liverpool’s Data Catalogue prior to publication and a DOI will be included
in the camera ready copy of this paper.

Bibliography

[1] R. Abdulrahman, S. Alim, D. Neagu, D. R. W. Holton, and M. Ridley. Multi Agent
System Approach for Vulnerability Analysis of Online Social Network Profiles
over Time. International Journal of Knowledge and Web Intelligence, 3(3):256–
286, December 2012.

[2] F. Belardinelli and D. Grossi. On the Formal Verification of Diffusion Phenom-
ena in Open Dynamic Agent Networks. In Proc. International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 237–245, 2015.

[3] E. M. Bryant and J. Marmo. The Rules of Facebook Friendship: A two-stage
examination of interaction rules in close, casual, and acquaintance friendships.
Journal of Social and Personal Relationships, 29(8):1013–1035, 2012.

[4] E Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] L. A. Dennis, M. Fisher, and M. Webster. Two-stage agent program verification.

Journal of Logic and Computation, 2016.
[6] L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini. Model Checking Agent

Programming Languages. Automated Software Engineering, 19(1):5–63, 2012.
[7] M. Fisher, L. Dennis, and A. Hepple. Modular Multi-Agent Design. Technical

Report ULCS-09-002, Department of Computer Science, University of Liverpool,
2009.

[8] M. Fisher and T. Kakoudakis. Flexible Agent Grouping In Executable Temporal
Logic. In Proc. 12th Int. Symposium on Languages for Intensional Programming
(ISLIP). World Scientific Press, 1999.

[9] A. Hepple, L. Dennis, and M. Fisher. A Common Basis for Agent Organisation in
BDI Languages. In Languages, Methodologies and Development Tools for Multi-
Agent Systems, volume 4908 of LNAI, pages 71–88. Springer-Verlag, 2008.

[10] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Proba-
bilistic Real-time Systems. In Proc. 23rd Int. Conf. Computer Aided Verification
(CAV), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[11] I.-F. Lam, K.-T. Chen, and L.-J. Chen. Involuntary Information Leakage in Social
Network Services. In Advances in Information and Computer Security: Third
International Workshop on Security, IWSEC 2008, Kagawa, Japan, November 25-
27, 2008. Proceedings, pages 167–183, Berlin, Heidelberg, 2008. Springer.

[12] Y. C. Lee, S. Bishop, H. Okhravi, and S. Rahimi. Information Leakage Detection
in Distributed Systems using Software Agents. In Proc. IEEE Symposium on
Intelligent Agents, pages 128–135, 2009.

[13] X. Lu, Z. Yu, B. Guo, and X. Zhou. Predicting the Content Dissemination Trends
by Repost Behavior Modeling in Mobile Social Networks. Journal of Network
and Computer Applications, 42:197–207, 2014.

[14] PRISM: Probabilistic Symbolic Model Checker. http://www.
prismmodelchecker.org. Accessed 2013-05-31.

[15] A. S. Rao and M. P. Georgeff. Modelling Agents within a BDI-Architecture. In
Proc. Int. Conf. Principles of Knowledge Representation and Reasoning (KR).
Morgan Kaufmann, 1991.

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org

[16] A. S. Rao and M. P. Georgeff. BDI Agents: from Theory to Practice. In Proc. 1st
Int. Conf. Multi-Agent Systems (ICMAS), pages 312–319, 1995.

[17] J. Seligman, F. Liu, and P. Girard. Facebook and the Epistemic Logic of Friend-
ship. In Proc. 14th Conf. Theoretical Aspects of Rationality and Knowledge
(TARK), 2013.

[18] M. Slavkovik, L. Dennis, and M. Fisher. An Abstract Formal Basis for Digital
Crowds. Distributed and Parallel Databases, 33(1):3–31, 2015.

[19] C. Stirling. Modal and Temporal Logics. In Handbook of Logic in Computer
Science. Oxford University Press, 1992.

[20] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

Monitoring Opportunism in Multi-Agent Systems ?

Jieting Luo1, John-Jules Meyer2, and Max Knobbout3

1,2Utrecht University, Utrecht, the Netherlands
3 Delft University of Technology, the Netherlands

{J.Luo,J.J.C.Meyer}@uu.nl,
M.Knobbout@tudelft.nl

Abstract. Opportunism is a behavior that causes norm violation and promotes
own value. In the context of multi-agent systems, we constrain such a selfish be-
havior through setting enforcement norms. Because opportunistic behavior can-
not be observed indirectly, there has to be a monitoring mechanism that can detect
the performance of opportunistic behavior in the system. This paper provides a
logical framework based on the specification of actions to specify monitoring
aproaches for opportunism. We investigate how to evaluate agents’ actions to be
opportunistic with respect to different forms of norms when those actions cannot
be observed directly, and study how to reduce the monitoring cost for oppor-
tunism.

1 Introduction

Consider a common social scenario. A seller sells a cup to a buyer and it is known by
the seller beforehand that the cup is actually broken. The buyer buys the cup without
knowing it is broken. Since the buyer’s value gets demoted, the behavior performed
by the seller is usually forbidden by the social norm. Such a social behavior intention-
ally performed by the seller is first named opportunistic behavior (or opportunism) by
economist Williamson [10]. It is a typical social behavior that is motivated by self-
interest and takes advantage of knowledge asymmetry about the behavior to achieve
own gains, regardless of the principles [6]. This definition implies that, given a social
context, opportunistic behavior results in promoting own value while demoting social
value. Therefore, it is prohibited by norms in most societies. In the context of multiagent
systems, we constrain such a selfish behavior through setting enforcement norms, in the
sense that agents receive a corresponding sanction when they violate the norm. On the
one hand, it is important to detect it, as it has undesirable results for the participating
agents. On the other hand, as opportunism is always in the form of cheating, deception
and betrayal, meaning that the system does not know what the agent performs or even
the motivation behind it (for example, in a distributed system), opportunistic behavior
cannot be observed indirectly. Therefore, there has to be a monitoring mechanism that
can detect the performance of opportunistic behavior in the system.

This paper provides a logical framework based on the specification of actions to
monitor opportunism. In particular, we investigate how to evaluate agents’ actions to

? The short paper version of this paper was accepted for ECAI 2016, The Hague.

2 Jieting Luo, John-Jules Meyer, Max Knobbout

be opportunistic with respect to different forms of norms when those actions cannot be
observed directly, and explore how to reduce the monitoring cost for opportunism. We
study formal properties of our monitoring approaches in order to determine whether
it is effective in the sense that whenever an action is detected to be opportunistic, it
was indeed opportunistic, and that whenever an action was opportunistic, it is indeed
detected.

2 Framework

Since monitors cannot observe the performance of opportunism directly, the action can
only be identified through the information about the context where the action can be
performed and the property change in the system, which is called action specification
[8] or action description [4]. Usually an action can be specified through its precon-
dition and its effect (postcondition): the precondition specifies the scenario where the
action can be performed whereas the postcondition specifies the scenario resulting from
performing the action. For example, the action, dropping a glass to the ground, can be
specified as holding a glass as its precondition and the glass getting broken as its effect.
Therefore, we assume that every action has a pair of the form 〈ψa

p , ψ
a
e 〉, where ψa

p is the
precondition of action a and ψa

e is the effect of performing action a in the context of
ψa
p , both of which are propositional formulas. Sometimes a particular action a can have

different results depending on the context in which it is performed. Based on this idea,
we argue that action a can be represented through a set of pairsD(a) = {〈ψa

p , ψ
a
e 〉, ...},

each element indicating its precondition and its corresponding effect. The absence of a
preconditioon means that the performance of the action is not context-dependent.

In this paper, the models that we use are transition systems, which consist of agents
Agt, states S, actions Act and transitionsR between states by actions. When an action
a ∈ Act is performed in a certain state s, the system might progress to a different state
s′ in which different propositions might hold. We also extend the standard framework
with an observable accessibility relationM. Note that in this paper we don’t talk about
synchronous actions for simplifying our model, meaning that we assume there is only
one action to execute in every state. Moreover, actions are deterministic; the same action
performed in the same state will always result in the same new state. Formally,

Definition 2.1. Let Φ = {p, q, ...} be a finite set of atomic propositional variables. A
monitoring transition system over Φ is a tuple I = (Agt, S,Act, π,M,R, s0) where

– Agt is a finite set of agents;
– S is a finite set of states;
– Act is a finite set of actions;
– π : S → P(Φ) is a valuation function mapping a state to a set of propositions that

are considered to hold in that state;
– M⊆ S×S is a reflexive, transitive and symmetric binary relation between states,

that is, for all s ∈ S we have sMs; for all s, t, u ∈ S sMt and tMu imply that
sMu; and for all s, t ∈ S sMt implies tMs; sMs′ is interpreted as state s′ is
observably accessible from state s;

Monitoring Opportunism in Multi-Agent Systems 3

– R ⊆ S × Act × S is a relation between states with actions, which we refer to as
the transition relation labelled with an action; since we have already introduced
the notion of action specification, a state transition (s, a, s′) ∈ R if there exists
a pair 〈ψa

p , ψ
a
e 〉 ∈ D(a) such that ψa

p is satisfied in state s and ψa
e is satisfied

in state s′, and both ψa
p and ψa

e are evaluated in the conventional way of classical
propositional logic; since actions are deterministic, sometimes we also denote state
s′ as s〈a〉 for which it holds that (s, a, s〈a〉) ∈ R;

– s0 ∈ S denotes the initial state.

Norms are regarded as a set of constraints on agents’ behavior. More precisely, a
norm defines whether a possible state transition by an action is considered to be illegal
or not. The same as [1], we simply consider a norm as a subset of R that is decided by
the designers of the system. Formally,

Definition 2.2 (Norm). A norm η is defined as a subset of R, i.e. η ⊆ R. Intuitively,
given a state transition (s, a, s′), (s, a, s′) ∈ η means that transition (s, a, s′) is forbid-
den by norm η. We say (s, a, s′) is an η-violation if and only if (s, a, s′) ∈ η. Otherwise,
(s, a, s′) is an η-compliant.

From the way that we define a norm, we can realize two extreme cases: if norm η is an
empty set, all the possible state transitions are η-compliant; and it is also possible that a
norm leads to states with no legal successor, which means that agents can only violate
the norm.

The logical language we use in this paper is propositional logic Lprop extended with
action modality, denoted as Lmodal. The syntax of Lmodal is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ

where p ∈ Φ and a ∈ Act. The semantics of Lmodal are given with respect to the
satisfaction relation “�”. Given a monitoring transition system I and a state s in I, a
formula ϕ of the language can be evaluated in the following way:

– I, s � p iff p ∈ π(s);
– I, s � ¬ϕ iff I, s 6� ϕ;
– I, s � ϕ1 ∨ ϕ2 iff I, s � ϕ1 or I, s � ϕ2;
– I, s � 〈a〉ϕ iff ∃s′ such that (s, a, s′) ∈ R and I, s′ � ϕ;

Other classical logic connectives (e.g.,“∧”, “→”) are assumed to be defined as abbrevi-
ations by using ¬ and ∨ in the conventional manner. We write I � ϕ if I, s � ϕ for all
s ∈ S, and � ϕ if I � ϕ for all monitoring transition systems I.

Given the languageLmodal, a norm η can be defined in a more specific way such that
it contains all the state transitions that are forbidden by norm η. Norms are described
in various ways so that they can represent the forbidden behaviors explicitly. Below
we define three forms of norms: η(ϕ,ψ), η(ϕ, a) and η(ϕ, a, ψ), each following an
example for better understanding. Of course, it is only a choice in this paper and more
forms of norms can be described and constructed based on our logical framework.

– Norm η(ϕ,ψ) Let ϕ and ψ be two propositional formulas and I be a monitoring
transition system. A norm η(ϕ,ψ) is defined as the set ηI(ϕ,ψ) = {(s, a, s′) ∈

4 Jieting Luo, John-Jules Meyer, Max Knobbout

R | I, s � ϕ ∧ 〈a〉ψ} In the rest of the paper, we will write η(ϕ,ψ) for short. This
is the most simple form. The interpreted meaning of a norm η(ϕ,ψ) is simply that
it is forbidden to achieve ψ in the states satisfying ϕ (ϕ-state) by any actions. The
forbidden actions are implicitly indicated in this type of norms. For example, it is
forbidden to keep the light on when everybody is sleeping, no matter you turn on
the flashlight or the lamp or lighten the candle.

– Norm η(ϕ, a) Let ϕ be a propositional formula, a be an action, and I be a monitor-
ing transition system. A norm (ϕ, a) is defined as the set ηI(ϕ, a) = {(s, a′, s′) ∈
R | I, s � ϕ and a′ = a}. In the rest of the paper, we will write η(ϕ, a) for short.
The interpreted meaning of a norm η(ϕ, a) is that it is forbidden to perform action
a in a ϕ-state. This is the most common form in which the action and the context
where the action is forbidden are explicitly represented, regardless of the effect that
the action brings about. For example, it is forbidden to smoke in a non-smoking
area.

– Norm η(ϕ, a, ψ) Let ϕ and ψ be two propositional formulas, a be an action,
and I be a monitoring transition system. A norm (ϕ, a, ψ) is defined as the set
ηI(ϕ, a, ψ) = {(s, a′, s′) ∈ R | I, s � ϕ ∧ 〈a′〉ψ and a′ = a}. In the rest of
the paper, we will write η(ϕ, a, ψ) for short. The interpreted meaning of a norm
η(ϕ, a, ψ) is that it is forbidden to perform action a in ϕ-state to achieve ψ. In this
type of norms, the action, the context that the action is forbidden and the effect that
the action will bring about are all represented explicitly. For example, in China it is
forbidden to buy a house based on mortgage when you already own one.

Sometimes, propositional formula ϕ, which is indicated in three types of norms above,
is called the precondition of an action [4]. However, it should be distinguished from
the precondition ψp we introduced in action pairs. ϕ is used to characterize the con-
text where the action(s) is forbidden to perform by the system, whereas ψp is used to
represent in which situation the action can be physically performed. Certainly there are
relationships between ϕ and ψp, which will be investigated in our monitoring mecha-
nism for opportunism.

3 Defining Opportunism

Before we propose our monitoring mechanism for opportunism, we should formally
define opportunism from the perspective of the system so that the system knows what
to detect for monitoring opportunism. In our previous paper [6] we emphasizes op-
portunistic behavior is performed by intent rather than by accident. However, monitors
cannot read agents’ mental states, so for monitoring we assume that agents violate the
norms by intention from a pragmatic perspective. For example, we always assume that
speeding is performed with intention. In this paper we remove all the references to the
mental states from the formal definition of opportunism in our previous paper [6], as-
suming that the system can tell agents’ value promotion/demotion causing by an action.
In a sentence, from the perspective of the system, opportunistic behavior performed
by an agent in a social context can be simply defined as a behavior that causes norm
violations and promotes his own value.

Monitoring Opportunism in Multi-Agent Systems 5

Opportunistic behavior results in promoting agents’ own value, which can be in-
terpreted as that opportunistic agents prefer the state that results from opportunistic
behavior rather than the initial state. For having preferences over different states, we
argue that agents always evaluate the truth value of specific propositions in those states
based on their value systems. For instance, the seller tries to see whether he gets the
money from selling a broken cup in order to have a preference on the states before and
after the transaction. After the transaction, the seller’s value gets promoted, because the
proposition he verifies (whether he gets the money) based on his value system becomes
true. Based on this interpretation, we first define a function EvalRef :

Definition 3.1 (Evaluation Reference). Let V be a set of agents’ value systems, S be a
finite set of states, andΦ be a finite set of atomic propositions, EvalRef : V×S×S → Φ
is a function named Evaluation Reference that returns a proposition an agent refers to
for specifying his preference over two states.

This function means that the proposition is dependent on the value system and the
two states. For simplicity, we assume that for value promotion the truth value of the
proposition that agents refer to changes from false to true in the state transition. For
example, assuming that proposition p represents the seller earns money, the seller pro-
motes his value in the way of bringing about p through selling a broken cup. Based on
this assumption, we can define Value Promotion, which is another important element of
opportunistic behavior.

Definition 3.2 (Value Promotion). Given two states s and s′, and an agent’s value
system V , his value gets promoted from state s to s′, denoted as s <V s′, iff s � ¬p and
s′ � p, where p = EvalRef (V, s, s′).

As we already introduced the notion of value for defining opportunism, it is natural
to extend our logical setting with value systems. We define a tuple of the form V =
(V1, V2, ..., V|Agt|) as agents’ value systems. Now the syntax of Lmodal still follows the
one we defined above, and the semantics with respect to the satisfaction relation become
of the form I, V, s � ϕ but is still defined in the same way as above.

Now we are ready to formalize opportunism from the perspective of the system.
Note that, comparing to the definition of opportunism in our previous work, we remove
all the references to mental states (knowledge, intention) because it is impossible for
monitors to detect any mental states, but we assume that the system can reason about
agents’ value promotion/demotion by an action based on the corresponding value sys-
tems. Firstly, we extend our language to also include Opportunism(η, a), and then we
extend the satisfaction relation such that the following definition holds.

Definition 3.3 (Opportunism). Given a monitoring transition system I with a value
system set V and a norm η, an action a performed by agent i in state s being oppor-
tunistic behavior is defined as follows: I, V, s � Opportunism(η, a) iff state transition
(s, a, s〈a〉) ∈ η and s <Vi s〈a〉.

Intuitively, opportunism is a state transition which is an η-violation. Besides, the state
transition also promotes the value of the agent who performs action a (agent i) by
bringing about p, which is the proposition that the agent refers to for having preference

6 Jieting Luo, John-Jules Meyer, Max Knobbout

over state s and s〈a〉. Action a performed in state s, more essentially state transition
(s, a, s〈a〉), is opportunistic behavior from the perspective of the system. We illustrate
this definition through the following example.

Example 1 (Selling a Broken Cup). Consider the example of selling a broken cup in
Figure 1. A seller sells a cup to a buyer. It is known only by the seller beforehand that
the cup is actually broken. The buyer buys the cup, but of course gets disappointed
when he uses it. Here the state transition is denoted as (s, sell(brokencup), s′). Given
a social norm η(>, sell(brokencup)) interpreted as it is forbidden to sell broken cups
in any circumstance, the seller’s behavior violates norm η. Moreover, based on the value
system of the seller, his value gets promoted after he earns money from the transition
(EvalRef (Vs, s, s′) = hasmoney(seller), I, V, s � ¬hasmoney(seller), I, V, s′ �
hasmoney(seller)). Therefore, the seller performed opportunistic behavior to the buyer
from the perspective of the system.

Fig. 1. Opportunistic behavior of selling a broken cup

4 Monitoring Opportunism

We propose a monitoring mechanism for opportunism in this section. A monitor is
considered as an external observer that can evaluate a state transition with respect to a
given norm. However, a monitor can only verify state properties instead of observing
the performance of actions directly. Our approach to solve this problem is to check how
things change in a given state transition and reason about the action taking place in
between. Here we assume that our monitors are always correct, which means that the
verification for state properties can always be done perfectly. In general, we consider
monitoring as a matter of observing the physical world with an operator m such that
m(ϕ) is read as “ϕ is detected” for an arbitrary property ϕ.

We first define a state monitor mstate, which can evaluate the validity of a given
property in a given state. Because a monitor can be seen as an external observer that can
observe agents’ activities according to the model, we define state monitors in this paper
in a similar way as we define knowledge in epistemic logic, and correspondingly adopt
S5 properties. We extend the language to also include mstate(ϕ) and the satisfaction
relation such that the following definition holds.

Monitoring Opportunism in Multi-Agent Systems 7

Definition 4.1 (State Monitors). Given a propositional formula ϕ, a set of value sys-
tems V and a monitoring transition system I, a state monitor mstate for ϕ over I is
defined as follows: I, V, s � mstate(ϕ) iff for all s′ sMs′ implies I, V, s′ � ϕ. Some-
times we will write mstate(ϕ) for short if clear from the context.

Note that we define state monitors with the form I, V, s � φ for being consistent with
the definitions in the rest of the paper, even though it is not relevant to value. Because
M-relation is reflexive, we have the validity � mstate(ϕ)→ ϕ, meaning that what the
state monitor detects is always considered to be true.

State monitors are the basic units in our monitoring mechanism. We can combine
state monitors to check how things change in a given state transition and evaluate it
with respect to a given set of norms. In Section 2, we introduced three forms of norms
through which certain agents’ behaviors are forbidden by the system. As we defined in
Section 3, opportunistic behavior performed by an agent is a behavior that causes norm
violations and promotes his own value, that is, opportunism is monitored with respect
to a norm and a value system of an agent. Based on this definition, we design different
monitoring opportunism approaches with respect to different forms of norms and dis-
cuss in which condition opportunism can be perfectly monitored. It is worth stressing
that one important issue of this paper is to have an effective monitoring mechanism
for opportunism in the sense that whenever an action is detected to be opportunistic, it
was indeed opportunistic, and that whenever an action was opportunistic, it is indeed
detected. Therefore, we will discuss this issue every time we propose a monitoring ap-
proach. We extend the language to also includemopp(η, a

′) and the satisfaction relation
such that the following definition holds.

Definition 4.2 (Monitoring Opportunism with Norm η(ϕ,ψ)). Given a monitoring
transition system I, a value system set V , a norm η(ϕ,ψ) and an action a′ performed
by agent i in state s, whether action a′ is opportunistic behavior can be monitored
through a combination of state monitors as follows:

I, V, s � mopp((ϕ,ψ), a
′) := mstate(ϕ) ∧ 〈a′〉mstate(ψ)

where
I � ϕ→ ¬p, I � ψ → p, and p = EvalRef (Vi, s, s〈a′〉)

In order to detect whether action a′ is opportunistic behavior in state s, we check if
the state transition (s, a′, s〈a′〉) is forbidden by norm η(ϕ,ψ): because the interpreted
meaning of norm η(ϕ,ψ) is that it is forbidden to achieve ψ in ϕ-state by any actions,
we check whether propositional formulas ϕ and ψ are successively satisfied in a state
transition. Moreover, we assume the following implications in our model that ϕ implies
¬p and ψ implies p, where proposition p is the proposition that agent i who performs
action a′ looks at based on his value system Vi. Since state s and s〈a′〉 are not given and
our monitors can only have partial information about the two states, we have a candidate
set of states for state s and a candidate set of states for state s〈a′〉 and any two states
from them satisfy the resulting property of function EvalRef , which means that given
the partial information the execution of action a′ in state s brings about p thus promoting
agent i’s value. The forbidden actions are not explicitly stated in the norm. Therefore,

8 Jieting Luo, John-Jules Meyer, Max Knobbout

although the monitors cannot observe the performance of opportunistic behavior, it still
can be perfectly detected with respect to norm η(ϕ,ψ), which can be expressed by the
following proposition:

Proposition 4.1. Given a transition system I, a norm η(ϕ,ψ), and an action a′ per-
formed by agent i in state s, action a′ is detected to be opportunistic with respect to
η(ϕ,ψ) in state s over I if and only if action a′ was indeed opportunistic:

I, V, s � Opportunism((ϕ,ψ), a′)↔ mopp((ϕ,ψ), a
′)

Proof. It trivially holds because the monitors detect exactly what the norm indicates
and they are assumed to be correct.

Definition 4.3 (Monitoring Opportunism with Norm η(ϕ, a)). Given a monitoring
transition system I, a value system set V , a norm η(ϕ, a), and a pair 〈ψa

p , ψ
a
e 〉 of action

a (〈ψa
p , ψ

a
e 〉 ∈ D(a) and ϕ ∧ ψa

p is satisfiable on I), whether action a′ performed by
agent i in state s is opportunistic behavior can be monitored through a combination of
state monitors as follows:

I, V, s � mopp((ϕ, a), 〈ψa
p , ψ

a
e 〉, a′) := mstate(ϕ ∧ ψa

p) ∧ 〈a′〉mstate(ψ
a
e)

where

I � ϕ ∧ ψa
p → ¬p, I � ψa

e → p, and p = EvalRef (Vi, s, s〈a′〉)

In order to check whether action a′ is opportunistic behavior (violates norm η(ϕ, a) and
promotes own value), we verify if action a′ is performed in a ϕ-state. Besides, we check
if action a′ is the action that the norm explicitly states. Since the monitors cannot ob-
serve the performance of action a′, we only can identify action a′ to be possibly action
a by checking if formulas ψa

p and ψa
e are successively satisfied in the state transition

by action a′, where ψa
p is action a’s precondition and ψa

e is the corresponding effect.
Similar to norm η(ϕ,ψ), we assume that ϕ ∧ ψa

p implies ¬p and ψa
e implies p, where

p is the proposition that agent i refers to based on his value system Vi. Again, with
this approach we have a candidate set of states for state s and a candidate set of states
for state s〈a′〉 and any two states from them satisfy the resulting property of function
EvalRef , which means that given the partial information the execution of action a′ in
state s brings about p thus promoting agent i’s value.

Given a norm and an agent’s value system, we can evaluate whether a state transition
by an action is opportunistic behavior. However, since the monitors can only verify
state properties instead of observing the performance of the action directly, we cannot
guarantee that an action that is detected to be opportunistic was indeed opportunistic,
which is given by the following proposition:

Proposition 4.2. Given a monitoring transition system I, a value system set V , a norm
η(ϕ, a), a pair 〈ψa

p , ψ
a
e 〉 of action a (〈ψa

p , ψ
a
e 〉 ∈ D(a) and ϕ ∧ ψa

p is satisfiable on I),
an action a′ performed by agent i in state s, action a′ that is detected to be opportunistic
was possibly opportunistic, which is characterized as

I, V, s 2 mopp((ϕ, a), 〈ψa
p , ψ

a
e 〉, a′)→ Opportunism((ϕ, a), a′)

Monitoring Opportunism in Multi-Agent Systems 9

Proof. This is because pair 〈ψa
p , ψ

a
e 〉might not be unique for action awithin the actions

that can be performed in ϕ-state. That is, we have a set of actions Act′ = {a′ ∈ Act |
I, V, s � mstate(ϕ ∧ ψa

p) ∧ 〈a′〉mstate(ψ
a
e)}, and action a indicated in norm η is one

of them (a ∈ Act′).

Given this problem, we want to investigate in which case or with what requirement
the action that is detected by the opportunism monitor is indeed opportunistic behavior.
We first introduce a notion of action adequacy. An action a ∈ Act is called adequate to
achieve ψ at state s ∈ S if and only if there exists a pair of 〈ψa

p , ψ
a
e 〉 in D(a) such that

I, V, s � ψa
p and I, V, s � 〈a〉(ψa

e → ψ) hold. Ad(s, ψ) is a function that maps each
state (s ∈ S) and a propositional formula ψ to a non-empty subset of actions, denoting
the actions that are adequate to achieve ψ in state s, thus we have Ad(s, ψ) ∈ P(Act).
And then we have the following proposition:

Proposition 4.3. Given a monitoring transition system I, a value system set V , a norm
η(ϕ, a), a pair 〈ψa

p , ψ
a
e 〉 of action a (〈ψa

p , ψ
a
e 〉 ∈ D(a) and ϕ ∧ ψa

p is satisfiable on I),
an action a′ performed by agent i in state s, the following statements are equivalent:

1. I, V, s � mopp((ϕ, a), 〈ψa
p , ψ

a
e 〉, a′)↔ Opportunism((ϕ, a), a′);

2. there exists only one action a ∈
⋃

s∈S′
Ad(s,>) that has pair 〈ψa

p , ψ
a
e 〉, where S′ =

{s ∈ S | I, V, s � ϕ}.

Proof. From 1 to 2: Statement 1 implies that action a′ that is detected to be opportunis-
tic was indeed opportunistic. If it holds, then a′ = a. Because we identify action a with
pair 〈ψa

p , ψ
a
e 〉, a′ = a implies that pair 〈ψa

p , ψ
a
e 〉 is unique for action a within the set of

actions
⋃

s∈S′
Ad(s,>). In other words, we cannot find one more action in

⋃
s∈S′

Ad(s,>)

that also has a pair 〈ψa
p , ψ

a
e 〉. From 2 to 1: If action pair 〈ψa

p , ψ
a
e 〉 is unique for action a

within
⋃

s∈S′
Ad(s,>), then once the pair is detected in the state transition we can deduce

that a′ = a. Hence, action a′ is indeed opportunistic behavior. And from the proof of
proposition 4.2 we can see that action a is within the set of actions that are detected to
be opportunistic, so if action a′ was opportunistic behavior then it is indeed detected.

We can also derive a practical implication from this proposition: in order to better
monitor opportunistic behavior, we should appropriately find an action pair 〈ψa

p , ψ
a
e 〉

such that the possible actions in between can be strongly restricted and minimized. As-
sume that we use monitormopp((ϕ, a), 〈>,>〉, a′), the possibility that the opportunism
monitor makes an error is extremely high, because every action that is available in ϕ-
state will be detected to be opportunistic behavior.

Definition 4.4 (Monitoring Opportunism with Norm η(ϕ, a, ψ)). Given a monitor-
ing transition system I, a value system set V , a norm η(ϕ, a, ψ), and a pair 〈ψa

p , ψ
a
e 〉 of

action a (〈ψa
p , ψ

a
e 〉 ∈ D(a) and ϕ∧ψa

p and ψ∧ψa
e are satisfiable on I), whether action

a′ performed by agent i in state s is opportunistic behavior can be monitored through
a combination of state monitors as follows:

I, V, s � mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′) :=

mstate(ϕ) ∧ 〈a′〉mstate(ψ) ∧mstate(ψ
a
p) ∧ 〈a′〉mstate(ψ

a
e)

10 Jieting Luo, John-Jules Meyer, Max Knobbout

where

I � ϕ ∧ ψa
p → ¬p, I � ψ ∧ ψa

e → p, and p = EvalRef (Vi, s, s〈a′〉)

In order to check whether action a′ is opportunistic behavior (violates norm η(ϕ, a, ψ)
and promotes own value), we verify if action a′ is performed in a ϕ-state and secondly
verify if action a′ brings about ψ. Besides, as the forbidden action a is explicitly stated
in norm η, we only can identify action a′ to be possibly action a by checking if formulas
ψa
p and ψa

e are successively satisfied in the state transition by action a′, where ψa
p is

action a’s precondition and ψa
e is the corresponding effect. Similar to norm η(ϕ,ψ)

and η(ϕ, a), we assume that ϕ ∧ ψa
p implies ¬p and ψ ∧ ψa

e implies p, where p is the
proposition that agent i refers to based on his value system Vi. Again, with the partial
information our monitors have detected we have a candidate set of states for state s
and a candidate set of states for state s〈a′〉 and any two states from them satisfy the
resulting property of function EvalRef , which means that given the partial information
the execution of action a′ in state s brings about p thus promoting agent i’s value.

The same as we do with η(ϕ, a), we cannot guarantee that an action that is detected
to be opportunistic was indeed opportunistic, which is given by the following proposi-
tion:

Proposition 4.4. Given a monitoring transition system I, a value system set V , a norm
η(ϕ, a, ψ), a pair 〈ψa

p , ψ
a
e 〉 of action a (〈ψa

p , ψ
a
e 〉 ∈ D(a) and ϕ∧ψa

p and ψ∧ψa
e are sat-

isfiable on I), action a′ that is detected to be opportunistic was possibly opportunistic,
which is characterized as

I, V, s 2 mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′)→ Opportunism((ϕ, a, ψ), a′)

Proof. Similar to proposition 4.2, it is because pair 〈ψa
p , ψ

a
e 〉 might not be unique for

action a within the actions that can be performed in ϕ-state to achieve ψ, and action a
indicated in norm η is one of those actions.

Because in our framework the set of state transitions is finite, we can assume that
all the possible state transitions are known beforehand. As all the state transitions in
our framework are labelled with an action, we introduce a function called Al(a), which
maps each action to a non-empty subset of state transitions, denoting all the transitions
labelled with action a. Thus we have Al(a) ∈ P(R). And then we have the following
proposition:

Proposition 4.5. Given a monitoring transition system I, a value system set V , a norm
η(ϕ, a, ψ), a pair 〈ψa

p , ψ
a
e 〉 of action a (〈ψa

p , ψ
a
e 〉 ∈ D(a) and ϕ ∧ ψa

p and ψ ∧ ψa
e

are satisfiable on I), and an action a′ performed by agent i in state s, the following
statements are equivalent:

1. I, V, s � mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′)↔ Opportunism((ϕ, a, ψ), a′);

2. there exists only one action a ∈
⋃

s∈S′
Ad(s, ψ) that has a pair 〈ψa

p , ψ
a
e 〉, where

S′ = {s ∈ S | I, V, s � ϕ};
3. R′ = {(s, a′, s′) ∈ R | I, V, s � ϕ ∧ ψa

p ∧ 〈a′〉(ψ ∧ ψa
e)} ⊆ Al(a).

Monitoring Opportunism in Multi-Agent Systems 11

Proof. The proof for from 1 ⇒ 2 is the same as the proof of proposition 4.3, so we
are going to prove from 2 ⇒ 3 and from 3 ⇒ 1. We can consider ψa

p and ψa
e as two

normal propositional formulas. From statement 2 it is clear that ϕ∧ ψa
p and ψ ∧ ψa

e are
successively satisfied in the state transition. From this we can divide the transitions into
two classes: one for the transitions that ϕ ∧ ψa

p and ψ ∧ ψa
e are successively satisfied

(denoted as R′), and the other do not. Since pair 〈ψa
p , ψ

a
e 〉 is unique to action a within

R′, all the transitions in R′ are labelled with action a. Therefore, R′ is a subset of
Al(a). From 2⇒ 3 is concluded. From 3⇒ 1, if all the transitions in R′ are labelled
with action a, then a′ = a and we can guarantee that action a′ is indeed opportunistic
behavior.

Example 1 (continued). We still use the example of selling a broken cup Figure 2 to
illustrate our monitoring approach. Here the state transition is denoted as (s, a′, s′)
instead of (s, sell(brokencup), s′) because the monitor cannot observe the action di-
rectly. Given a social norm η(>, sell(brokencup)) and the seller’s value system Vs, the
system checks whether the seller performed opportunistic behavior. Firstly, the mon-
itor doesn’t need to check the context where action a′ is performed because action
sell(brokencup) is forbidden in any context as norm η says. Secondly, the monitor tries
to identify if action a′ is indeed sell(brokencup) as norm η indicates: assuming that
〈hascup(seller)∧¬hasmoney(seller), hascup(buyer)∧ hasmoney(seller)〉 is the
pair we find for action sell(brokencup), we check if both I, V, s � mstate(hascup(seller))
and I, V, s′ � mstate(hascup(buyer) ∧ hasmoney(seller)) hold. Moreover, the in-
formation we had for state s and s′ implies that the seller’s value gets promoted based
on the value system Vs, as EvalRef (Vs, s, s

′) = hasmoney(seller). If they all hold,
action a′ is detected to be opportunistic behavior. As the action pair we find is unique to
action sell(brokencup), action a′ is indeed sell(brokencup) thus being opportunistic.

However, if 〈hascup(seller), hascup(buyer)〉 is the pair that we find for action
sell(brokencup), then action a′ is not necessarily sell(brokencup) because possibly
a′ = give(brokencup), meaning that 〈hascup(seller), hascup(buyer)〉 is not unique
to action sell(brokencup).

Fig. 2. Monitoring opportunism of selling a broken cup

12 Jieting Luo, John-Jules Meyer, Max Knobbout

We proposed three approaches to monitor opportunistic behavior with respect to
three different forms of norms. Based on the definitions of three approaches, the fol-
lowing validities hold: given an action a′,

I, V � mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′)→ mopp((ϕ,ψ), a

′)

I, V � mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′)→ mopp((ϕ, a), 〈ψa

p , ψ
a
e 〉, a′)

The interpreted meaning of the first validity is that, if action a′ is detected to be op-
portunistic behavior with respect to norm η(ϕ, a, ψ), then it will be also detected to be
opportunistic behavior with respect to norm η(ϕ,ψ). Similar with the second validity.
This is simply because, the less information the norm gives, the more actions are for-
bidden to perform. The state transitions that violate norm η(ϕ, a, ψ) is the subset of
the state transitions that violate norm η(ϕ,ψ) or η(ϕ, a). This gives us an implication
that the approach to monitor opportunistic behavior with respect to η(ϕ, a, ψ) can be
used to monitor the other two ones, because η(ϕ, a) can be represented as η(ϕ, a,>)
and η(ϕ,ψ) can be represented as η(ϕ, a, ψ)(∀a ∈ Act). But there is monitoring cost
involved. Apparently the approach with respect to η(ϕ, a, ψ) is the most costly one be-
cause we need to check more things compared to the other two ones. We will study our
monitoring mechanism with cost in the next section.

5 Monitoring Cost for Opportunism

For designing a monitoring mechanism, we not only think about whether it can perfectly
detect agents’ activities, but also consider if it is possible to decrease the cost involved in
the monitoring process. In this section, we will study monitoring cost for opportunism
based on the approaches we proposed in the previous section.

There is always cost involved when we monitor something, and the cost depends on
what we want to check and how accurate the result we want to get. For example, check-
ing DNA is more expensive than checking a finger print. Our basic idea in this paper is
that a monitor is considered as an external observer to verify state properties, and that
given a set of propositional formulas X as state properties, we verify the conjunction of
formulas from X through combining state monitors. Therefore, we define monitoring
cost through a function c : Lprop → R+. Intuitively, given a state property denoted by
a propositional formula ϕ, function c(ϕ) returns a positive real number representing the
cost that it takes to verify ϕ. Such costs can be deduced from expert knowledge and are
assumed to be given.

Definition 5.1 (Monitoring Cost). Cost c over state properties Lprop is a function
c : Lprop → R+ that maps a propositional formula to a positive real number. Given
a set of propositional formulas X , we also define c(X) :=

∑
ϕ∈X c(ϕ) for having the

cost of monitoring a set X .

Given a set of propositional formulas X , the cost of monitoring X is the sum of the
cost of verifying each element in X . However, if it holds for ϕ,ϕ′ ∈ X that ϕ 6= ϕ′,
and ϕ→ ϕ′, then monitoring X\{ϕ′} is actually the same as monitoring X: when ϕ is
detected to be true,ϕ′ must be true; whenϕ is detected to be false, the conjunction based

Monitoring Opportunism in Multi-Agent Systems 13

on X is false. But c(X\{ϕ′}) is less than c(X) if we logically assume that there is no
inference cost 1. This leads us to have the following definition Largest Non-inferential
Subset:

Definition 5.2 (Largest Non-inferential Subset). Given a monitoring transition sys-
tem I and a set of formulas X , let XI be the largest non-inferential subset such that
for all ϕ ∈ XI there is no ϕ′ ∈ XI with ϕ 6= ϕ′ such that I � ϕ→ ϕ′.

Proposition 5.1. Given a monitoring transition system I, a set of formulas X and its
largest non-inferential subset XI , it holds that c(XI) ≤ c(X).

Proof. It holds obviously because XI is a subset of X .

Therefore, given a set of propositional formulas we want to verify, we always look
for its largest non-inferential subset before checking anything in order to reduce the
monitoring cost. Certainly, there are more properties among those formulas but we leave
them for future study.

For reducing monitoring cost, it is also important to verify a set of propositional
formulas X = {ϕ1, ..., ϕn} in a certain order instead of checking each formula ϕi(1 ≤
i ≤ n) randomly. Besides, given the truth property of conjunction that a conjunction
of propositions returns false if and only if there exists at least one false proposition, we
can stop monitoring X once a proposition is detected to be false because it has already
made the conjunction false, regardless of the truth value of the rest of the propositions.
Therefore, it is sensible to sort the propositions in X in ascending order by cost before
checking anything, when the sorting cost is much lower than the monitoring cost. In
total, we have n! sequences over X . A sequence over X is denoted as λ(X) and the set
of all the sequences over X is denoted as L(X). In order to study monitoring cost with
monitoring order, we first define the function of monitoring cost for a sequence and an
ordered sequence by monitoring cost:

Definition 5.3 (Monitoring Cost for Sequences). Given a set of propositional formu-
las X = {ϕ1, ..., ϕn} and a sequence λ(X), the monitoring cost of checking λ(X) is
defined as follows:

c(λ(X)) :=

n∑
i=1

c(ϕi)di,

where

di =

{
0 if m(ϕi−1) = false or di−1 = 0 (i > 1);
1 otherwise.

With this function of monitoring cost for a sequence, the monitoring process will stop
and no more monitoring cost will have after a false proposition is detected. Given the
monitoring cost of each proposition, we can sort the propositions in X in ascending
order by monitoring cost.

1 Assuming that inference cost is lower than monitoring cost is logical, as we only need to com-
pute the inference relation among formulas in the machine while monitoring usually requires
setting up costly hardwares (such as cameras).

14 Jieting Luo, John-Jules Meyer, Max Knobbout

Definition 5.4 (Cost Ordered Sequence). Given a set of propositional formulas X , a
cost ordered sequence Xc is a sequence over X ordered by the monitoring cost of each
element in X such that Xc ∈ L(X) and for 0 ≤ i ≤ j we have c(Xc[i]) ≤ c(Xc[j]).
In general, such a sequence is not unique because it is possible for two propositions to
have the same monitoring cost; in this case we choose one arbitrarily.

A cost ordered sequence Xc represents the monitoring order over X: we follow the
order in Xc to check the elements in X one by one. In general, we can reduce the
monitoring cost if we follow the cost ordered sequence, which is represented by the
following proposition:

Proposition 5.2. Given a set of propositional formulas X and a cost ordered sequence
Xc over X , if formulas in X are independent of each other, the expected value of the
monitoring cost ofXc is the lowest in that of any sequence overX , that is,E(c(Xc)) ≤
E(c(λ(X))), where λ(X) ∈ L(X).

Proof. Because before detecting we have no knowledge abou the truth value of the
formulas in X , the priori probability that each formula ϕ ∈ X is true is 1/2. Since
there are |X| = n propositions in X and each proposition can be detected to be true
or false, there are in total 2n scenarios about the truth value of the propositions in X ,
and the monitoring cost for each scenario can be calculated according to Definition 5.3.
Let us use Scen(X) to denote the set of all the scenarios about the truth value of the
propositions in X , and each scenario from Scen(X) denoted as ϕ̂, contains for each
proposition ϕ ∈ X either true or false. Therefore, the expected value of the monitoring
cost of any λ(X) is formalized as

E(c(λ(X))) =
1

2n

∑
ϕ̂∈Scen(X)

n∑
i=1

c(ϕi)di

=
1

2n

(
n∑

i=1

c(λ(X)[i]) +

n∑
i=1

2n−nc(λ(X)[i]) + ...+ 2n−1c(λ(X)[1])

)
,

where
n∑

i=1

c(λ(X)[i]) represents the monitoring cost for the scenario where all the

propositions are detected to be true, and
n∑

i=1

2n−nc(λ(X)[i]) represents the monitor-

ing cost for the scenario where all the propositions are detected to be true except the
last one, ..., and 2n−1c(λ(X)[1]) represents the monitoring cost for the scenarios where
the first proposition is detected to be false. From this equation we can see that the mon-
itoring cost of the propositions at the front of the sequence strongly influence the value
of E(c(λ(X))): the lower monitoring cost the propositions at the front have, the less
value E(c(λ(X))) returns. Thus, the expected value of the monitoring cost of Xc is the
lowest in all the sequences over X .

Until here we investigated monitoring cost for any finite set of formulas generally.
We can apply the above ideas to monitoring opportunism. Recall that opportunism is
monitored with respect to a norm and a value system. Given a norm η(ϕ, a, ψ) and

Monitoring Opportunism in Multi-Agent Systems 15

a value system Vi, we evaluate a state transition (s, a′, s′) by checking whether set
X1 = {ϕ,ψa

p , p} hold in state s, and whether X2 = {ϕ,ψa
e , p} hold in state s′, where

〈ψa
p , ψ

a
e 〉 ∈ D(a) and p = EvalRef (Vi, s, s

′). Note that we cannot combine set X1 and
X2 into one set because we verify the formulas from the two sets in different states.
The inferences reltion among the formulas give rise to the relation between different
monitoring approaches.

Proposition 5.3. Given a monitoring transition system I, a value system set V , a norm
η(ϕ, a, ψ), a pair 〈ψa

p , ψ
a
e 〉 of action a (〈ψa

p , ψ
a
e 〉 ∈ D(a) and ϕ ∧ ψa

p and ψ ∧ ψa
e are

satisfiable on I), and an action a′, if I, V � (ϕ→ ψa
p) ∧ (ψ → ψa

e), then

I, V � mopp((ϕ,ψ), a
′)→ mopp((ϕ, a, ψ), 〈ψa

p , ψ
a
e 〉, a′);

if I, V � ψa
e → ψ, then

I, V � mopp((ϕ, a), 〈ψa
p , ψ

a
e 〉, a′)→ mopp((ϕ, a, ψ), 〈ψa

p , ψ
a
e 〉, a′).

Proof. If I � (ϕ→ ψa
p) ∧ (ψ → ψa

e) holds, we have the largest non-inferential subset
of X1, (X1)I = {ϕ}, and the largest non-inferential subset of X2, (X2)I = {ψ},
which means that we only need to verify ϕ in the initial state and ψ in the final state of
any state transition. Thus, if action a′ is detected to be opportunistic with norm η(ϕ,ψ),
it is also the case with norm η(ϕ, a, ψ). We can prove the second statement similarly.

This proposition implies that when the above inference holds we can monitor oppor-
tunism with the approach mopp((ϕ,ψ), a

′) (or mopp((ϕ, a), 〈ψa
p , ψ

a
e 〉, a′)) rather than

mopp((ϕ, a, ψ), 〈ψa
p , ψ

a
e 〉, a′) for saving monitoring cost.

Together with our general ideas about monitoring cost, we propose the following
steps to monitor opportunism: given a monitoring transition system I, a value system
set V , a norm η(ϕ, (a), (ψ)) in any form, a pair 〈ψa

p , ψ
a
e 〉 and an action a′ performed

by agent i in state s, in order to check whether action a′ is opportunistic behavior,

1. Check if there is any inference in I, V among the formulas we need to verify in state
s X1 = {ϕ,ψa

p , p} and s〈a′〉 X2 = {ϕ,ψa
e , p}, find out the largest non-inferential

subsets (X1)I and (X2)I , and choose the corresponding monitoring approach;
2. Arrange all the formulas from (X1)I and (X2)I in a sequence ordered by monitor-

ing cost ((X1)I ∪ (X2)I)c;
3. Verify all the formulas from ((X1)I ∪ (X2)I)c one by one; when one formula is

detected to be false, the monitoring process stops and action a′ is detected not to be
opportunistic behavior; otherwise, it is detected to be opportunistic behavior.

With the above steps, the monitoring cost for opportunism can be reduced in general
when the monitoring is performed for lots of times. For a single time of monitoring, we
still cannot guarantee that the monitoring cost is reduced with the above steps, as pos-
sibly (only) the last formula in the sequence ordered by cost is detected to be false, for
which the monitoring cost is the highest compared to any sequence ordered at random.

16 Jieting Luo, John-Jules Meyer, Max Knobbout

6 RELATED WORK

Opportunism is a social and economic concept proposed by economist Williamson [10].
The investigation of opportunism in multi-agent system is still new. [6] proposes a for-
mal definition of opportunism based on situation calculus, which forms a theoretical
foundation for any further study related to opportunism. Compared to the definition
in [6], we remove all the references to mental states for proposing our monitoring ap-
proaches, but still captures norm violation and agents’ own-value promotion that the
system can recognize and reason about.

The specification of actions is a crucial element in our framework and monitoring
mechanism. In general, it consists of the precondition of an action that specifies when
the action can be carried out and the effect of an action that specifies the resulting state.
A lot of logic formalisms are constructed based on this idea, such as Hoare logic [5]
and the situation calculus [7]. In Hoare logic, the execution of a program is described
through Hoare triple {P}C{Q}, where C is a program, P is the precondition and Q
is the postcondition, which is quite close to our approach of action pair 〈ψa

p , ψ
a
e 〉. In

the situation calculus, the effect of action is specified through successor state axioms,
which consist of positive consequences and negative consequences.

Our work is also related to norm violation monitoring. Norms have been used as a
successful approach to regulate and organize agents’ behaviors [9]. There are various
ways of the specification of norms and norm violations such as [2]. Similar to [1], we
only consider a norm as a subset of all possible system behaviors. About norm viola-
tion monitoring, [3] proposes a general monitoring mechanism for the situation where
agents’ behaviors cannot be perfectly monitored. Our work is strongly inspired by them,
but we focus on the situation where agents’ actions cannot be observed directly but can
be reasoned about through checking how things change, assuming state properties can
be perfectly verified.

7 CONCLUSION

Opportunism is a behavior that causes norm violation and promotes agents’ own value.
In order to monitor its performance in the system, we developed a logical framework
based on the specification of actions. In particular, we investigated how to evaluate
agents’ actions to be opportunistic with respect to different forms of norms when those
actions cannot be observed directly, and studied how to reduce the monitoring cost
for opportunism. We proved formal properties aiming at having an effective and cost-
saving monitoring mechanism for opportunism. Future work can be done on value: in
our monitoring approaches it is assumed that we can reason whether an action pro-
motes/demotes the value with a value system and how things change by the action, but
a value system is still like a black box that we still don’t know how the propositions we
detect relate to a value system. Moreover, in our framework every state transition is la-
belled with an action and an agent. We can improve the effectiveness of our monitoring
mechanism by attaching capability to agents. In this way, given an agent with its capa-
bility, the possible actions that were performed by the agent can be eliminated. About
reducing monitoring cost, more properties among formulas can be studied together with
the relations among the formulas we detect for monitoring opportunism.

Monitoring Opportunism in Multi-Agent Systems 17

References

1. Thomas Agotnes, Wiebe Van Der Hoek, JA Rodriguez-Aguilar, Carles Sierra, and Michael
Wooldridge, ‘On the logic of normative systems’, in Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’07), pp. 1181–1186, (2007).

2. Alan Ross Anderson, ‘A reduction of deontic logic to alethic modal logic’, Mind, 67(265),
100–103, (1958).

3. Nils Bulling, Mehdi Dastani, and Max Knobbout, ‘Monitoring norm violations in multi-
agent systems’, in Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pp. 491–498, (2013).

4. J Fiadeiro and T Maibaum, ‘Temporal reasoning over deontic specifications’, Journal of
Logic and Computation, 1(3), 357–395, (1991).

5. Charles Antony Richard Hoare, ‘An axiomatic basis for computer programming’, Commu-
nications of the ACM, 12(10), 576–580, (1969).

6. Jieting Luo and John-Jules Meyer, ‘A formal account of opportunism based on the situation
calculus’, AI & SOCIETY, 1–16, (2016).

7. John McCarthy, ‘Situations, actions, and causal laws’, Technical report, DTIC Document,
(1963).

8. Raymond Reiter, Knowledge in action: logical foundations for specifying and implementing
dynamical systems, MIT press, 2001.

9. Yoav Shoham and Moshe Tennenholtz, ‘On the synthesis of useful social laws for artificial
agent societies (preliminary report)’, in AAAI, pp. 276–281, (1992).

10. Oliver E Williamson, ‘Markets and hierarchies: analysis and antitrust implications: a study
in the economics of internal organization’, (1975).

Sanction recognition: A simulation model of extended
normative reasoning.

Martin Neumann and Ulf Lotzmann
1

Abstract.1 The submission describes aspects of an analysis of the
violent breakdown of a criminal group, undertaken as part of the
project GLODERS (www.gloders.eu) which provided a set of
computational tool for analysis and simulation of extortion racket
systems (ERS). Task of the research included studying intra-
organizational norms within criminal networks and organizations.
The analysis of the breakdown of a criminal group revealed
theoretical insights in one of the most important theoretical
concepts in the social sciences: social norms. The very fact that a
criminal group operates outside the state monopoly of violence
generates an ambiguity that hampers the recognition of sanctions.

1 INTRODUCTION

The paper describes part of the project GLODERS aimed at

developing ICT models for the comprehension of norms regulating

the relations between civil society and organized crime as well as

the norms regulating the internal relations within organized crime

groups. Here we concentrate on the analysis of the intra-

organizational norms within criminal groups. For this purpose a

participatory modelling approach had been used [1]. In close

collaboration with stakeholders from police forces a case study of

the collapse of criminal group had been analyzed. The analysis

revealed that normative codes of procedure are constituted by

violence [2].

This finding provides insight for sociological theory in general:

It has often been claimed that punishment is a central mechanism

for the constitution of social order [3-5]. In particular in rational

choice theories of norms the notion of sanctions is a central

theoretical element [6]. Norms are perceived as a certain degree of

behaviour regularity within a group that is ensured by sanctioning

norm deviation [7]. Thus it is a theory of norm enforcement. While

it is acknowledged the individuals might comply with norms even

in the absence of sanctions, ultimately the validity of norms refers

to the notion of sanctions or at least the risk of being sanctioned as

a norm enforcement mechanism [7-10]. Sanctioning deviant

behaviour is not only allowed but even requested. Thus sanctions

are a central theoretical concept in a rational choice account of

norms. However, the notions of sanctions itself is commonly

regarded as unproblematic. Typically it is not further explained

what behavioural patterns constitute sanctions. Rather they are

treated as a theoretical terminus which is introduced to explain

further observations such as norm conformity [11-13].

However, the research on criminal groups revealed that

empirically sanctions are an ambiguous concept that requires

1 Institute for information systems, University of Koblenz, email

(corresponding author): maneumann@uni-koblenz.de

certain preconditions. Namely, ambiguity needs to be resolved by

the existence of a legitimate normative code of procedure. The

classical role model is the legal code constituted by a state

monopoly of violence. However, exactly this precondition is not

met in the case of criminal groups as they operate outside the state

monopoly of violence. For this reason the violent constitution of a

normative code of procedure remains ambiguous: Recognition of

sanctions depends on an error prone process of interpretation. The

empirical case shows that sanction recognition is an ambiguous

process. In the absence of a state monopoly of violence it is likely

to be error prone.

During the GLODERS project this interpretation process had

been analyzed by simulation, which currently remains a black-box

in normative agent-based simulation models.

2 PRIOR RESEARCH

Normative agent-based simulation models can broadly be

characterized by two categories: On the one hand models inspired

by evolutionary game theory with a theoretical background in

rational choice theory. On the other hand models cognitively richer

models with a background in artificial intelligence and cognitive

science. Certainly this is only a tendency and not a clear-cut

disjunction [14].

A game theoretical setting is characterised by a strategic

decision situation in which the benefit of the individual decision is

dependent on the decision of other agents. In classical cooperation

games agents face a binary decision situation to cooperate or

defect. Typically agents would yield higher returns of (somehow

measured) utility if both (in two player games) or all (in N-player

games) agents would cooperate. However, at least in the short

term, defection yields higher returns in terms of individual utility if

the other agent(s) do not cooperate. Yet, since agents cannot

control the decision of the other agent, they are trapped in a non-

optimal equilibrium of defection. Individually the players would

lose utility values if the decide to cooperate independent of the

decision of the other agents. In such a situation a social force of

normative prescriptions to cooperate might push agents away from

mutual defection.

Agent-based models have extensively been used in evolutionary

game theory. Simulation models have been applied in iterated N-

person games to study the evolution of norms [14]. Already in

1986 Axelrod has set the frame with a prototypical model of norms

and so-called meta-norm games [15]. In the norms game an agent

is has the options to defect or not defect. With a certain probability

defection can be observed by other agents. These decide to punish

or not to punish the defector. In case of punishment the defector

http://www.gloders.eu/

receives a negative payoff while the punishing agent has to pay a

certain cost for the effort of punishing to capture the intuition that

also punishing involves some efforts. In simulation experiments

agents reproduce differentially dependent on their success. It is

investigated whether the system of agents in this game arrive at a

state of in which no defecting agents survive. The emergence of a

behavioural regularity is interpreted as the emergence of norms.

Results reveal that this is not the case. For this reason a further

game is introduced, the meta-norms game in which also agents can

be punished which do not punish a defector. In simulation

experiments this game seemed to suffice for the emergence of

norms [However see 16]. This brief example shall highlight the

structure of the agents’ actions and decision: Agents face three

possible actions: first of all agents decide to cooperate or defect. In

this setting the norm prescribes to cooperate. Furthermore agents

can decide to sanction. Sanctioning is typically modelled in terms

of numerical values, i.e. the sanctioned agent looses a certain

amount of numerical utility. Thus agents calculate and react to their

utility gains. How sanctioning reduces utility values is not made

explicit. In consequence agents immediately realise if they have

been sanctioned. While recent research on evolutionary game

theoretical models show that altruistic behaviour may emerge in

certain circumstances even in the absence of sanctions [17,18], also

these model do not explain sanctions. The message that can be

taken away for the purpose of this paper is that sanctioning is

perceived as unambiguous.

Models based in cognitive science apply a more differentiated

concept of norms. Rather than being reduced to cooperative

behaviour norms can be recognized by agents as a cognitive

concept, i.e. it is a deontic belief that people ought to behave in a

certain way. In this manner it is possible to model for instance

norm innovation as the acquisition of a new deontic belief [19,20].

In both frameworks agents learn norms by being faced with

sanctions in correspondence to certain behaviour. In [21,22] the

deontic concept of norms is applied for studying the effectiveness

of sanctions. Basically a game theoretical setting is extended with a

deontic message, informing the victim about the normative reason

for the punishment. On a more conceptual level [23] develops a

sophisticated process of normative reasoning. [24] develops a

cognitive model for differentiating different types of motivation for

sanctioning behaviour. Thus, typically the cognitive models

concentrate on the reverse side of the process involved in

sanctioning: The active side of the punishing agent. If the punished

agent is considered as in case of models of normative learning

agents need to identify norm violations but not interpret the act of

punishment itself. A notable exception can be found in [25] which

documents experiments on the likelihood to accept punishments

based on desire for others’ esteem and to meet others expectations.

This is closely related to the question sanction recognition.

However, also here others’ aggression is equal to punishment

3 EMPIRICAL DATA

In the following an example from research on intra-

organizational norms in criminal group will show the ambiguity

inherent in the recognition of sanctions. Data had been police files

of a criminal investigation. The criminal activities consisted of

drug trafficking and laundering the illegal money gained in the

drug business. Drug trafficking was undertaken by ‘black collar

criminals’ with access to the production and distribution of drugs.

‘White collar criminals’ were ordinary businessmen responsible for

the money laundering. The psychological techniques applied to

draw them in the illegal world beyond a point of no return will not

be subject here [26]. Police files identified (at least) one white

collar criminal working in the real estate business. It is important

that the real estate trader had a good reputation in the legal society.

This allowed him to invest illegal money in the legal market and

give the return of investment back to the investor, i.e. a black collar

criminal. Money laundering is essentially based on a norm of trust:

the black collar criminals need to hand over the money to their

partners and trust them that they will get the return of investment

back from the trustee. In a covert organization this cannot be

secured by formal contracts. Therefore trust is essential. The

network lasted for about 10 to 15 years until it collapsed. An initial

divide went out of control. Mistrust spread rapidly through the

whole network, generating a cascading effect through the network

which destroyed the overall network in a violent blow-up.

Conflicts escalated to a degree of violence that has been described

by witnesses as a ‘rule of terror’ in which ‘old friends were killing

each other’. In fact, many members of the network were killed. For

the individuals involved in the situation, this ‘rule of terror’ could

not be attributed to an individual member any more. Instead, from

the perspective of the subjective perception of the group members

the terror regime had to be described as governed by an invisible

hand. Development of a conceptual model of the data revealed that

an ambiguity in recognizing sanctions was of central importance

for the collapse.

4 A CONCEPTUAL MODEL

The data is transformed in a conceptual model with a tool

denoted as CCD (consistent conceptual description) [27,28]. The

CCD tool provides an environment for developing a conceptual

model by a controlled identification of condition-action sequences

which represent the mechanisms at work in the processes described

in the data. Empirical traceability is ensured by tracing the

individual sequences back to text annotation in the data. Moreover;

the CCD tool creates a code template which can be implemented in

a simulation model. The transformation tool called CCD2DRAMS

allows the semi-automatic transformation into a basic simulation

model that preserves the empirical annotations during the

simulation runs. Thus the tool provides a bridge from the evidence

base to a simulation [28].

To investigate the particular process of reasoning on aggression

in sanction recognition we focus on selected elements of how an

initial mistrust generates a positive feedback loop of conflict

escalation. How the process starts is displayed in figure 1. It shows

an abstract event-action sequence which is derived from the

analysis of the data. The box with a red flag represents an event.

The action is represented by a box with a yellow flag. Moreover, in

bracket we see the possible type of agents that can undertake the

action. The arrow represents the relation between the event and the

action. This is not a deterministic relation. However, the existence

of the condition is necessary for triggering the action. Once an

action is performed a new situational condition is created which

again triggers new actions.

Fig. 1: Initiation of aggression

In the figure, the process starts with the event that someone

becomes disreputable which triggers the action of performing an

act of aggression against this person. When the victim recognises

the aggression, it needs to interpret the motivation. Here two

options are considered as possible. This process of reasoning on

aggression is displayed in figure 2.

Fig 2: Interpretation of aggression

Figure 2 shows a branching point in the interpretation: The

perceived aggression can be interpreted either as norm

enforcement, denoted as ‘norm of trust demanded’, or as norm

deviation, denoted as ‘norm of trust violated’. Dependent on the

interpretation different action possibilities are triggered. We do not

go into the details here. However, we show an example how these

abstract mechanisms can be traced back to the data. Starting point

is the event that for some reasons (out of the scope of the

investigation) some member of the organisation becomes distrusted

(see figure 1). Empirically the spread of mistrust in the group was

initiated by a severe aggression2:

Annotation (perform aggressive action against member X): ”An

attack to the life of M.”

It remains unclear who commissioned the assassination and for

what reason. It shall be noted that it is possible that an attack on the

life could be the execution of a death-penalty for deviant behaviour

2
 To preserve privacy of data, names have been replaced by notations such

as M., V01 etc.

from his side such as being too greedy. In fact, some years later M.

had been killed because he had been accused of stealing drugs. It

remains unclear whether this was true or the drugs just got lost for

other reasons. However, the murder shows that death penalty is a

realistic option in the interpretation of the attack on his life.

However, M. survived the attack which allowed him to reason on

the aggression. This is the interpretative process displayed in

abstract terms in figure 2. No evidence can be found in the data

about this reasoning. However, it can be found in the data how he

reacted.

Annotation (member X decides to betray criminal organisation):

Statement of V01: ”M. told the newspapers ‘about my role in the

network’ because he thought that I wanted to kill him to get the

money.”

Fig. 3: Instantiation of a feedback loop

This example provides insights into processes of reasoning

about aggression: First, he was simply wrong in the assumption

that this particular member of the organisation (V01) mandated the

attack. Nevertheless it is not completely implausible consideration.

M. was one of the black collar criminals who invested money in

the legal market though the white collar criminals. V01 was one of

the white collar criminals. Thus V01 possessed a considerable

amount of drug money which he could have kept for himself if the

investor (in this case M.) would be dead. This might be a ‘rational’

incentive for an assassination. Second, it can be noted that M.

interpreted the attack on his life not as a penalty (i.e. death-penalty)

for deviant behaviour from his side3. Instead he concluded that the

cause of the attack was based on self-interest (the other criminal

‘wanted his money’). Thus he interpreted the attack as norm

deviation rather than enforcement (see figure 2). Next, he attributed

the aggression to an individual person and started a counter-

reaction against this particular person by betraying ‘his role in the

network’. This is an example that he interpreted the aggression as a

violation of his trust in V01 and reacted by betraying him. This

counter-reaction provoked further panic of other group members

such as the one who had been reported here and brought into

trouble. Thus his reaction caused further reasoning about the cause

of and possible reactions to his aggression. In figure 3 it is

indicated that this enfolds a positive feedback loop. Now a new

member of the organization undertakes the same reasoning process,

whether to interpret the aggression as a violation of a norm of trust

3 It shall be noted that also the other interpretation in the branching point

can be found in the data which is illustrated in the following statement:

Annotation (member X obeys): ”I paid, but I'm alive.”

and how to react. Positive feedback cycles may easily become

unstable. Thus they are a well known cause for generating strange

systemic behaviour. Here it generated a cycle of revenge and

counter-revenge which finally went out of control.

5 THEORETICAL ANALYSIS

The empirical case shows that sanction recognition remains

ambiguous, if it cannot be secured by the state monopoly of

violence. However, what actually are sanctions? In behavioural

terms, sanctions belong, next to for instance war, to the very few

occasions of socially permitted and even requested aggression. It

can be an informal sign such as humping a horn in the case of car

drivers, signalling their dissatisfaction with other road users.

Aggression can also be highly regulated by legal code and eventual

court decisions. Thus sanctioning is a form of regulated aggression

among humans. While it may be phenomenological plausible that

actors realize that they are victim of an aggression, further

inference is necessary for identifying the reasons for the

aggression. As it becomes obvious in the case of criminals, not

every aggression is norm enforcement. For instance, stealing drugs

is a strong temptation for criminals in the drug market. Likewise

beating an old lady for stealing her purse is a severe norm

deviation. Thus at least two extreme cases can be contrasted:

1. Aggression can be self-interested norm deviation. A hold-up

might be one example.

2. Aggression can be socially inspired norm enforcement.

Scolding someone for throwing trash just on the ground

instead of using a litter bin might be but one example.

This broad distinction is not a fine grained, comprehensive

categorization. For instance, aggression might also be an emotional

reaction without considering any consequences, be they personally

or socially beneficial or not. However, inherent in sanction

recognition is an interpretative process. Sanction recognition

implies a necessity of reasoning about aggression: namely,

interpretation of the motivation. Typically, this is not considered in

normative simulation models. This leads to the question whether

the emergence of a normative order of a code of procedure can

emerge from the scratch. Next, a model of extended normative

reasoning is presented.

6 SIMULATING REASONING ON
AGGRESSION

The conceptual model has been transformed in an agent-based

simulation model. Development of the simulation model has been

undertaken in the framework of the code template generated by the

CCD tool. The model includes the actor types Black Collar

Criminal, White Collar Criminal and Police. Moreover, the general

public is included as a static entity.

A comprehensive description of the full model can be found in

[29] but is beyond the scope of limits of this paper. For the purpose

of demonstrating the extended normative reasoning not the entire

model will be presented but rather how the specific normative

aspect of sanction recognition is modeled. For this purpose two

further cognitive concepts are of fundamental importance:

Following [30] criminals are endowed with image and reputation.

Both are properties expressing the standing of a criminal, the rank

in the hierarchy in a way. Reputation is set for each criminal agent

in the initialization of a simulation run, is known to all members of

the criminal network and does not change in the course of time. In

contrast, the image is information private to each criminal agent,

i.e. each criminal agent has its own image of each fellow criminal.

Reputation is an objective property of the criminals while image

denotes the subjective evaluation of the fellows by each member of

the gang. The image of an agent x in the ‘mind’ of agent y

represents the personal experience of the agent y in the interaction

with agent x. Reputation results from the common evaluation of an

agent by a whole group. For instance an agent y can learn that

agent x has a high reputation even though it might not have any

personal experience with this agent x. Levels of image and

reputation are ordinal scaled attributes: very high, high, modest low

and very low. The image values do change during simulation runs:

Whereas observation of deviant behavior decreases the image that

the observing agent has of deviant agent, observation of acceptance

of punishment works in the converse direction and image increases

again. If the normative action was a norm violation, then the image

strongly decreases (“two levels”), in the case of norm obedience

(not shown in the decision tree) the image increases by one “level”.

Moreover, perception of aggression as norm enforcement increases

the image of aggressor in the ‘mind’ of the victim, whereas

perception of aggression as norm violation decreases the image of

the aggressor.

The dynamics is modeled in a tick-based way. A tick represents

one stage of action or cognition. The model starts with an initial

normative event at the first tick regarding a random criminal. This

is an unspecified violation of intra-organizational norms that

stimulates the necessity of conflict regulation. This normative

event is observed by fellow criminals which results in an

aggression. The victim experiences the aggression and starts with

an interpretation process. An overview of the interpretation process

is provided in fig. 4. In fig. 4 x represents the agent that has been

selected randomly of being accused of an unspecified norm

violation. This is observed by the fellow criminal y which reacts by

an aggression. Therefore y needs to interpret the aggression

performed by y.

Fig. 4: Interpretation of aggression

The interpretation begins with the distinction whether the

aggressor is reputable or not. In the latter case, the aggression is

regarded as unjust which triggers an obligatory reaction in the next

tick (C2). The agent gets in rage (emotional frame) and reacts by

some counter-aggression. If the aggressor is judged to be reputable,

then a normative process is performed (C1). Thus only reputable

agents are justified to sanction. The normative process can have

two results: either it leads to the conclusion that a norm is indeed

demanded, persuading the criminal to obey, or that no norm is

demanded. The second stage is reasoning about whether the

attacked criminal might have violated a norm in the recent past

which would have led to a sanction of another fellow criminal. The

basic idea of this normative reasoning is quite simple: It is

evaluated whether own actions performed in the past stand in some

kind of temporal relationship with a normative event assigned to

this criminal. Literally speaking the agent x checks in its memory

whether it violated the group norms. In order to conduct this

evaluation, each criminal can access a global event board where all

aggressions performed by each criminal are recorded. Also the

normative events are logged in a similar way, so that temporal

relations between these types of events can easily be derived. The

normative process is considered successful, if aggressions are

found which at most 16 ticks later led to normative events (C3).

The 16 ticks represent the length of the memory of the agent

[comp. 19 for a similar account]. If such relations exist, the

criminal regards a norm demanded and typically react with obeying

to the normative request. However, even if the normative process

failed (C4), the aggression might still be regarded as a justified

sanction: If the attacker has a high or very high image, and the

aggression was mild or modest (C5), then it is assumed that a norm

is demanded as well. This cognitive heuristic has been included in

the model to cover the possible aptitude of criminals with high

image (and high reputation) to mitigate conflicts, either by

mediating or by just exercising authority. If the aggression is not

too severe the simulated criminals do not argue with the bosses.

7 PRELIMINARY SIMULATION
RESULTS

During a simulation run the agents develop a personal history of

experience with aggressions. These are interpreted differently. In

the following screenshots of a particular run will be shown. First

figure 5 shows the initialization of a simulation run. The number of

reputable agents can be initialized by the user. Image is initialized

randomly. Figure 6 shows how the simulation proceeds. Initially

one agent has been selected randomly for the initial normative

event. Criminal-1 is accused for an unspecified norm violation.

This is observed by Reputable Criminal 1 which reacts by an

aggressive act, in this case the modest aggression of an ‘outburst of

rage’.

Fig. 5: Initialization of the simulation. The user interface shows the

network of criminals, consisting of one white collar criminal (in white), 7

reputable and 3 ‘ordinary’ criminals. The ‘ordinary’ criminals have a red

margin to indicate that they are in an emotional frame. The arrows represent

the strength of the personal image of the agents. Police might interfere at

some instance, represented by a hexagon. Additionally the public is a

passive entity represented as a cloud.

Fig. 6: Reaction on the initial unspecified norm violation of the agent

criminal-1 by the agent reputable criminal-1.

As the agent Criminal-1 survives the ‚outburst of rage‘, the

agent recognizes the aggression and is able to reason about the

aggression. As Reputable Criminal-1 fulfills the condition of being

a possible normative authority (because it is a reputable agent),

Criminal-1 checks the event board for a possible norm violation on

its part. However, the initial event is not stored in the event board

and the agent finds no norm demanded. This is shown in figure 7.

Fig.7: Reasoning on aggression: While the victim of the aggression realizes

that the aggressor is reputable and therefore legitimized to potentially

sanction norm deviation, the victim does not find a norm violation in the

memory. Therefore the agent does not interpret the aggression as sanction.

In the next step however, the agent inspects its personal image

of the attacker. At this moment the image is high and for this

reason the agent obeys even though it does not find a norm

violation. In consequence Criminal-1 updates its image value of

Reputable Criminal-1 by increasing its image. Reputable

Criminal-1 is becoming a temporary normative authority for

Criminal 1. This is shown in figure 8.

Fig. 8: Final result of the interpretation of aggression. Even though the

victim does not find a norm violation, the agent additionally checks its

personal image of the aggressor. As the image is high, the agent

subordinates to the authority of the aggressor and does accept the

aggression.

Table 1 shows the image values of the agent Criminal-1 in this

run, the one randomly selected for the initial normative event. The

agent experienced an aggression and interpreted it as sanction due

to the image of the aggressor. As this interpretation increases the

image of the aggressor it increases the likelihood that further

aggression by that agent will be interpreted as sanction again. The

agent Reputable Criminal-1 becomes a normative authority for this

particular agent.

Table 1. Development of selected image values of agent criminal-1.

Tick Criminal 6 Reputable

Criminal 0

Reputable

Criminal 1

1 modest High High

2 modest high high

3 modest high high

4

modest high

veryhigh

(sanction)

5 modest high veryhigh

6 modest high veryhigh

7 modest high veryhigh

8 modest high veryhigh

8 CONCLUSION AND FUTURE WORK

Sanction recognition suffers from ambiguity. As the

consequence recognition of a sanctioning may fail. It is empirically

mistaken to perceive sanctioning as a basic theoretical term that

needs no explanation. This demonstrates that it is necessary to

include sanction recognition in a sociological analysis of norms.

This shows that sanction recognition is a black box in normative

agent-based models which need to be filled by intra-agent

processes of reasoning on aggression that reflects the empirical

finding. The gap in recognizing sanctions is overcome by

extending normative reasoning by two branching points: first,

agents decide whether aggression is performed by a possibly

legitimate authority. For this reason reputation of agents is

included. Only in that case agents continue reasoning by inspecting

an event board whether they undertook an action which could have

been a norm violation. If a possible norm violation is found agents

react by an act of obedience that reflects a kind of apology. If no

such event can be found, a second branching point is included:

Agents may still obey if they have a high subjective image of the

aggressor. In that case they subordinate to the aggressor by

deciding not to dispute the action of the high ranking agent. In both

branching points deciding to obey increases the image of the

aggressor as a legitimate normative authority.

A comprehensive analysis of the model’s behaviour space is

still work in progress. For this reason only preliminary hints can be

provided whether the emergence of a normative code of conduct is

possible from the scratch without social structure that safeguards

normative authorities. The emergence implies the development of

normative authorities that are legitimized to perform acts of

aggression. In the model these are with a high image. Figure 9

shows first results of the development of the average image of the

criminals during a selected different simulation run. The average

image can have values between +2 (very high) and -2 (very low).

The graph shows that the image does not remain stable over time.

However, including some ups and downs Reputable Criminal-2

performs best. Nevertheless, authority does not converge to a stable

steady state remains fluid during the simulation. Inspection of the

subjective image values of the agents shows that image does not

converge between the agents.

Fig 9: Development of average image values in a selected run.

Thus, simulation runs show the development of a normative

authority. However, this is only temporary and subjective. The

authority need not be stable, but rather remains fluid and need not

converge between the agents but remains ambiguous. For this

reason authority may collapse at any time.

ACKNOWLEDGEMENT

The research leading to these results has received funding from the

European Union's Seventh Framework Programme (FP7/2007-

2013) under grant agreement n° 315874., GLODERS Project.

REFERENCES

[1] O. Barreteau et al., Our Companion Modelling Approach. Journal of

Artificial Societies and Social Simulation 6 (1), (2003).

[2] G. Lindemann, Weltzugänge. Die mehrdimensionale Ordnung des

Sozialen. Velbrück, Weilerswist, (2014).

[3] E. Fehr, and S. Gachter, Cooperation and punishment in public goods

experiments. American Economic Review 90(4), 980-994, (2000).

[4] J. Henrich and R. Boyd, Why people punish defectors. Weak

conformist transmission can stabilize costly enforcement of norms in

cooperative dilemmas. Journal of Theoretical Biology 20(8), 79 – 89,

(2001).

[5] J. Henrich, R. McElreath, A. Barr, J. Ensminger, C. Barrett, and A.

Bolyanatz, Costly punishment across human societies. Science, 312

(5781), 1767-1770, (2006).

[6] C. Bicchieri and R. Muldoon, Social Norms. In: E. N. Zalta (ed.), The

Stanford Encyclopedia of Philosophy, 2014. URL=

<http://plato.stanford.edu/archives/spr2014/entries/social-norms/>.

[7] M. Hechter and K.D. Opp, Social Norms. Russell Sage Foundation,

New York, 2001.

[8] E. Ullman-Margalit, The emergence of norms. Oxford university

press, Oxford, 1978.

[9] C. Bicchieri, The grammar of society. The nature and dynamics of

social norms. Cambridge University Press, New York, 2006.

[10] C. Horne, Explaining norm enforcement. Rationality and Society

19(2), 139–170, (2007).

[11] R. Carnap, Testability and meaning pt I. Philosophy of science 3:

419-471, Pt II Philosophy of science 4, 2-40, (1936/7).

[12] J. Sneed, The logical structure of mathematical physics. Reidel,

Dordrecht, 1971.

[13] V. Gadenne, Theoretische Begriffe und die Prüfbarkeit von Theorien.

Zeitschrift für allgemeine Wissenschaftstheorie 16(1), 19 – 24(1985).

[14] M. Neumann, Homo socionicus. A case study of simulation models

of norms. Journal of Artificial Societies and Social Simulation 11(4),

(2008).

[15] R. Axelrod, An evolutionary approach to norms. American Political

Science Review 80(4), 1095 - 1111, (1986).

[16] M. Galan and L. Izquierdo, Appearances can be deceiving: Lessons

learned Re-Implementing Axelrod’s ‘Evolutionary Approach to

Norms’. Journal of Artificial Societies and Social Simulation 8(3),

(2005).

[17] D. Helbing and W. Yu, The outbreak of cooperation among success-

driven individuals under noisy conditions. Proceedings of the

national academy of science 106(10): 3680-3685, (2009).

[18] D. Helbing and H. Gintis, Homo socialis. An analytical core for

sociological theory. Review of behavioural economics 2(1-2): 1 – 59,

(2015).

[19] T. Savarimuthu, S. Cranefield, M.A. Purvis and M. K. Purvis,

Obligation Norm Identification in Agent Societies. Journal of

Artificial Societies and Social Simulation 13(4), (2010).

[20] R. Conte, G. Andrighetto, M. Campenni (Eds.), Minding norms.

mechanisms and dynamics of social order in agent societies. Oxford

university press, Oxford, (2014).

[21] G. Andrighetto, J. Brandts, R. Conte, J. Sabater-Mir, H. Solaz, and D.

Villatoro, Punish and Voice: Punishment Enhances Cooperation

when Combined with Norm-Signalling. PLoS ONE 8(6).

[22] D. Villatoro, G. Andrighetto, J. Sabater-Mir, and R. Conte, Dynamic

sanctioning for robust and cost-efficient norm compliance.

Proceedings of the 22nd international joint conference in artificial

intelligence, Barcelona, Spain, July 16-22, (2011).

[23] C. Hollander and A. Wu, The Current State of Normative Agent-

Based Systems. Journal of Artificial Societies and Social Simulation

14(2), (2011).

[24] F. Giardini, G. Andrighetto, R. Conte. A cognitive model of

punishment. Proceedings of the 32nd annual conference of the

cognitive science society, 11-14 August 2010, 1282-1288, (2010).

[25] G. Andrighetto, D. Grieco, L. Tummolini, Perceived legitimacy of

normative expectations motivates compliance with social norms

when nobody is watching. Frontiers in Psychology 6: 1413

[26] C. van Putten, The process of extortion: problems and qualifications.

Conference on extortion racket systems. University of Vienna,

Vienna, 7 – 11, 2012.

[27] S. Scherer, M., Wimmer, and S. Markisic, Bridging narrative

scenario texts and formal policy modelling through conceptual policy

modelling. Artificial Intelligence and Law 21(4), 455 – 484, (2013).

[28] S. Scherer, M. Wimmer, U. Lotzmann, S. Moss, and D. Pinotti, An

evidence-based and conceptual model-driven approach for agent-

based policy modelling. Journal of Artificial Societies and Social

Simulation 18(3), (2015).

[29] U. Lotzmann and M. Neumann, A simulation model of intra-

organizational conflict regulation in the crime world. In C.

Elsenbroich, D. Anzola, and N. Gilbert (eds.), Social dimensions of

organized crime, Springer, New York, 222-262, (2016).

[30] J. Sabater-Mir, M. Paolucci and R. Conte, Repage: REputation and

imAGE among limited autonomous partners. Journal of artificial

societies and social simulation 9(2), (2006).

http://jasss.soc.surrey.ac.uk/13/4/3/savarimuthu.html
http://jasss.soc.surrey.ac.uk/13/4/3/savarimuthu.html
http://jasss.soc.surrey.ac.uk/13/4/3/savarimuthu.html

An Architecture for the Legal Systems of
Compliance-Critical Agent Societies

Antônio Carlos da Rocha Costa 1

Abstract. This paper introduces an architecture for the
legal systems of agent societies. The reasons for an agent so-
ciety requiring the constitution of a legal system of its own are
exposed. The main features of Hans Kelsen’s concept of legal
system are reviewed. The way those features determine the
proposed architecture is explained. A brief case study is pre-
sented, to help to contextualize and make concrete the ideas
of the paper. Finally, the concept of compliance-critical agent
society is introduced and related to the body of the paper.

1 Introduction

This paper adopts a particular concept of agent society, and
introduces an architecture for legal systems constituted in
agent societies that are conceived in accordance with that
concept. The main features of such architecture were derived
from an operational reading of Hans Kelsens theory of legal
systems [20] which, differently from Ronald Dworkin’s [11] or
H. L. A. Hart’s [13] theories, focuses on the structural and
dynamical aspects of legal systems, not on their contents.

The paper is structured as follows. Section 2 presents a
view of the historical evolution of multiagent systems, situat-
ing agent societies in the current evolution stage, detaching
them from the agent organizations, which were the focus of
the previous stage. Section 3 briefly analyzes the notion of
entanglement of agent and human societies, that seems to be
emerging from the current stage of evolution.

Section 4 reviews in formal terms the concept of agent so-
ciety adopted in the work.

Section 5 discusses the main types of situations in which an
agent society may have to constitute a legal system of its own,
to become capable of adequately regulating its structure and
functioning. Section 6 summarizes the operational reading of
Kelsen’s theory of legal systems presented in [7].

Section 7 reviews the formal concept of legal system of agent
society that emerged from that reading of Kelsen’s theory and
sketches the proposed architecture of legal systems of agent
societies.

Section 8 presents a sample application, sketching a model
for the way legal systems may support public policies. The
section is intended as an illustration of the way agent societies
endowed with legal systems may be used as semantical bases
for the modeling of legal issues in public policy simulation
efforts.

1 Programa de Pós-Graduação em Informática na Educação da
UFRGS. 90.040-060 Porto Alegre, Brazil. Programa de Pós-
Graduação em Computação da FURG. 96.203-900 Rio Grande,
Brazil. Email: ac.rocha.costa@gmail.com .

Section 9 discusses some of the issues raised by the paper
and comments related work. Section 10, presents the main
conclusion of the paper, namely, that agent societies that are
entangled with human societies may have to be taken as a
particular type of critical systems, and have their development
subject to the requirements that the development of critical
systems usually has.

2 The Historical Evolution of Multiagent
Systems

Figure 1 illustrates our view of the historical evolution of mul-
tiagent systems.

Figure 1. A view of the temporal evolution of multiagent
systems.

We characterize each stage as follows:

• in the first stage (Agents, up to the 1980’s), the focus was
on the development of agents and their interactions: a rep-
resentative model is, e.g., in [22];

• in the second stage (Agent Groups, in the 1990’s), the fo-
cus was on the development of agent groups and the roles
agents played in groups: a representative model is, e.g.,
in [12];

• in the third stage (Agent Organizations, in the 2000’s), the
focus was on the development of agent organizations and
the systems of norms that regulate their structure and func-
tioning: a representative model is, e.g., in [18];

• we submit here that we are facing now the fourth stage, and
the eve of the fifth one (Agent Societies and Inter-Societal
Multiagent Systems, from the 2010’s on), where the focus is
in the development of full-fledged agent societies (with so-
cial sub-systems constituted by inter-organizational struc-
tures) and of systems of multiple agent societies (structured
on the bases of inter-societal exchanges).

We claim that the model of agent society adopted in the
present work (see Sect. 4) is representative of the focus of
the fourth stage.

3 Agent Societies and their Entanglement
with Human Societies

We remark that the first three stages of the historical evo-
lution discussed above conceived multiagent systems as sys-
tems embedded in human contexts, that is, multiagent systems
were conceived as interacting with individual users or groups
of users, on the basis of an interface that encapsulated in-
side the multiagent system all the structures and functional
processes that it required.

Agent societies and inter-societal multiagent systems, on
the other hand, seem to tend to operate in a way that entan-
gles their structure and functioning with the structure and
functioning of the human contexts where they are situated 2.

That is, their tendency seems to further the embedding of
multiagent systems in human societies, by leading the individ-
ual users or groups of users of a multiagent system to partici-
pate within that multiagent system, by becoming structurally
involved (directly or through avatars) in the performance of
its functional processes 3.

As argued in [6], such type of entanglement opens the way
for the rising of legal and moral implications for the design
and operation of agent societies.

The present paper aims to contribute to the treatment of
the legal issues that may arise from such entanglements, by
presenting an architecture for legal systems of agent societies,
that is, full-fledged legal systems constituted and operated
internally to agent societies. Section 5 discusses in more detail
the reasons for the constitution of such legal systems.

4 A Formal Concept of Agent Society

We have been using in our work a concept of agent society
aiming at a full-fledged social structure and functionality, to
meet the requirements of the current stage of the historical
evolution of multiagent systems that we identified above.

For that, we define an agent society as a particular type of
multiagent system endowed with the following characteristics:

• openess, meaning that the agents can freely enter and leave
the system;

• organized, meaning that the functioning of the society is
given by a system of processes for which it is possible to

2 Entanglements which, due to the openness of agent societies, may
acquire dynamical features, both structurally and functionally,
perhaps on the basis of modular components of agent societies [5].

3 And, through the mutual recursive entanglement of agent soci-
eties with human societies, agents and agent organizations, and
individual users and groups of users participate in all the agent
and human societies which are mutually entangled.

separate individual processes, performed by single agents,
and social processes, performed by sets of agents (said to
be the organizational units of the society), but so that for
each agent can determine the part it plays in each social
process (possibly, none);

• persistent, in the sense that the system of social processes of
the society, and the organizational units that perform them,
persist in time, independently of which individual agent
enters or leave the society (up to a minimum population of
agents in the society);

• situated, in the sense that the society exists and operates in
an environment (material and/or symbolic), whose objects
may be taken by the agents and organizational units to
help them to perform their individual and social processes.

Figure 2 sketches the architecture that we envisage for
agent societies, emphasizing the various levels of their orga-
nizational structure:

• the micro-organizational level (Orgω), constituted by the
organizational roles (Ro) that the individual agents may
play in the society and in the organizational units;

• the meso-organizational level (Orgµ), constituted by the
organizational units (OU), each constituted by a set of or-
ganizational roles, structured by a network of role inter-
actions, and each organizational unit possibly recursively
based on lower-level organizational units; we call agent or-
ganizations the maximal organizational units, that is, the
organizational units that are not constitutive of higher-level
organizational units;

• the macro-organizational level (OrgΩ), constituted by so-
cial sub-systems (SS), each social sub-system constituted
by a set of agent organizations, structured by a network of
inter-organizational interactions.

Let T denote the time structure. We formally define an
agent society as follows (see [4] and [10] for further details):

An agent society is a time-indexed structure AgSoct =
(Popt,Orgt,MEnv t,SEnv t, Impt,Uset) where:

• Popt is the populational structure of the society at
time t, that is, the network of interacting agents that
inhabit it at that time;

• Orgt = (Orgtω,Orgtmu,OrgtΩ) is the organizational
structure of the society at time t, with:

– Orgtω is the micro-organizational structure, that is,
the network of interacting organizational roles im-
plemented by the population at time t;

– Orgtµ is the meso-organizational structure, that is,
the network of interacting organizational units im-
plemented by the organizational roles at time t;

– OrgtΩ is the macro-organizational structure, that is,
the network of interacting social sub-systems imple-
mented by the agent organizations of the society at
time t;

– MEnv t is the material environment of the society,
constituted by the material objects that the agents
and agent organizations may make use of;

– SEnv t is the symbolic environment of the society,
constituted by the symbolic objects that the agents

2

Figure 2. Sketch of a structural model for agent societies, with the location of the organizational part of its legal system.

and agent organizations may make use of 4;

– Impt is the implementation relation, determining
how each organizational level of the organizational
structure (the components, their behaviors and
their interaction processes) is implemented by the
lower one, at time t (including how the micro-
organizational structure is implemented by the pop-
ulational structure);

– Uset is the use relation, determining how the objects
of the material and the symbolic environments are
used by the components of the populational and the
organizational structure, at time t.

Figure 2 illustrates also the locus that a legal system would
take in the architecture of the agent society: it should expand
the whole range of organizational levels, from the level of the
social roles to the level of the social sub-system that is con-
stitutes, passing through the level of the organizational units
that constitute a legal system (for instance, law monitors and
law enforcers).

It illustrates also that legal systems should have connections
with other social sub-systems (for instance, administrative or
cultural sub-systems) and that the social roles of legal systems
may be performed by agents that also perform other social
roles, in other social sub-systems of the society.

4 The symbolic environment is of particular importance for the
present work, for it is there that the public symbolic components
of the legal system of the agent society are realized (see Sect. 7).

5 Three Reasons for Constituting Legal
Systems in Agent Societies

Agent and human societies may entangle to each other in
complicated ways. An elementary example of such entangle-
ment, enough to hint on the problems that may arise in more
contrived ones, is shown in Fig. 3.

The figure illustrates the agent and human societies, their
legal environments (combinations of relevant legal systems),
the interactions between agents and humans, and the bindings
to the agents and humans to some of the legal environments
that are relevant for their actions.

In view of the possibility of such complicated articulations,
it seems that there are at least two main reasons for having
agent societies equipped with legal systems of their own.

1. Dynamicity of the legal systems present in a legal environ-
ment, and the possibility of the dynamic emergence of legal
conflicts between them:
Agents and agent organizations should have access to the
legal norms under which they operate, should be warned
when they violate them, and should informed of the corre-
sponding sanctions, in such cases. All that should be dy-
namically provided, at run time, to the agents and agent
organizations, specially when the legal systems of the legal
environment in which they operate are dynamically sub-
ject to changes, so that legal conflicts between them may
dynamically arise.

2. Contrived nesting of legal systems in a legal environment :
As agent and human societies operate in an articulated way,
with agents and agent organizations of the former, and in-

3

Figure 3. An elementary example of entanglement of agent and human societies, and of their legal systems.

dividual and organizational users of the later, performing
systemic functions for each other’s societies, the legal sys-
tems of agent and human societies may nest to each other
in contrived ways, possibly with a variety of legal conflicts
among them, it is important that reliable monitoring of
conducts, judgments and sanctioning be provided, which
can only be made locally, to each agent society.

3. The need of official record of norm violations and sanction
applications, and of their official communication to the le-
gal systems of human societies:
Since the decisions and actions of the agents and agent or-
ganizations are often encapsulated inside the agent societies
where they operate, and (either by demands of efficiency or
by security reasons) not always made dynamically available
outside those societies by the agents and agent organiza-
tions themselves, it is important that official information
about violations of legal norms by agents or agent organi-
zations, and official information about the application of
sanctions to them, be made available to the legal systems
of the human societies to which those agent societies are ar-
ticulated. This is specially relevant when agent and human
societies are entangled, with agents and agent organizations
of agent societies operating on behalf for individual or or-
ganizational users of human societies, and when individual
or organizational users of human societies perform systemic
functions for the agents or agent organizations of the agent
societies.

We submit that only legal systems officially constituted inside
agent societies and appropriately certified by the legal systems
of the human societies to which they are entangled (thus oper-
ating only under norms and actions legally accepted by those
human societies) can satisfy those three requirements.

6 An Operational Reading of Kelsen’s
Theory of Legal Systems

We summarize here the operational reading of Hans Kelsen’s
theory of legal systems [20] that was presented in [7].

6.1 Kelsen’s Notion of Legal System

Law is, for Kelsen [20], a social technique, that is, a technique
of social control. And legal systems are the way they operate
inside societies.

The legal system of a society is, thus, a part of that society,
one of its sub-systems, in the conceptual framework of the
model presented in Sect. 4. As such, their basic components
are agents and sets of agents constituted as organizational
units.

Kelsen calls legal organs the agents and organizational units
that comprise a legal system. They are constituted as legal
organs by the legal system itself, and only when behave and
interact in accordance to their legal authorizations they are
acting as legal organs.

Kelsen’s notion of a legal system, then, is that of a social
mechanism [14], one of the mechanisms responsible for con-
trolling the society where it operates.

6.2 Differentiating Legal and Moral
Systems

In adopting Kelsen’s theory of legal systems in the present
work, we adopt also the distinction he makes between legal
and moral systems [19], which is important given the impor-
tance that moral systems constituted inside agent societies
may happen to acquire (see, e.g. [8]).

In particular, we adopt the main implication of that dis-
tinction, formulated in [7], namely, that the usual notion of
normative system, founded on deontic logic, is too general
and abstract to be able to capture the important operational
differences between those two specific types of normative sys-
tems.

For, the essential difference between legal and moral sys-
tems [19] is neither in their possible contents, nor in their
logical form, but in the way they are operationalized in a so-
ciety, specially the mechanism through which norm violations
are sanctioned: in legal systems, the sanctioning mechanisms
are officially constituted by the legal system itself, often under

4

a hierarchical organization; in moral systems, the sanctioning
mechanisms are based on the subjects of the moral systems
themselves, which are personally responsible for sanctioning
each other.

6.3 Kelsen’s Notion of Legal Norm

In its most general form, Kelsen’s conception [20], a legal norm
is a statement that if a certain conduct α is performed, an-
other conduct β ought to be performed, as consequence of
the performance of the former. The conduct α is called the
condition of the legal norm and the conduct β, the sanction
of the legal norm.

Notice, however, that the consequence relation that con-
stitutes a legal norm is not, from Kelsen’s point of view, a
logical relation, because conducts are not propositions: it is
a relation between two actions, two conducts. Kelsen calls it
the imputation relation [20], and in [7] we denote it by: α ⇓ β.

Of course, the execution of conducts can be expressed
through propositions, and the imputation relation can be pre-
sented in a deontical form: if 〈α〉 and 〈β〉 are propositions,
each denoting the occurrence of its respective conduct, and
if �X denotes that the obligation of bringing about that X,
then any imputation might perhaps be logically expressed by
〈α〉 ⇒ �〈β〉. But that, of course, would obscure Kelsen’s em-
phasis on the operational sense of imputation.

The relation between the two expressions, the operational
and the logical, allows Kelsen to distinguish [20] between the
legal language of a legal system, to which imputations belong,
and the theoretical language of the jurisprudence about that
legal system, to which belong the logical and epistemological
propositions that concern that legal system.

That distinction justifies the operational reading of Kelsen’s
theory of legal system introduced in [7], which provides an op-
erational semantical model for legal systems that sees a legal
system as an interpreting mechanism for its legal language.

Imputations, however, are not enough to constitute the ba-
sic operational model of legal norms. Besides imputations, the
legal languages of legal systems should allow for the notion of
authorization: an authorization is a conduct that brings about
that certain subject of the legal system becomes authorized
to perform some conduct.

We denote an authorization stating that a legal subject ag
is authorized to perform a conduct β by:

Auth(ag . β)

However, a full-fledged operational model for legal norms
requires the notion that occurrences of conducts be individu-
alized, in the sense at a minimum the occurrence of a conduct
should be related to the subject of the legal system that real-
ized it. Thus, instead of denoting the occurrence of a conduct
simply by, e.g., α, one is required to denote it by, e.g., ag . α,
where ag identifies the legal subject that realized the conduct.

With individualized imputations and authorizations, legal
norms can then be given the general operational form [7]:

(ag1 . α) ⇓ Auth(ag2 . β)

meaning that, in the legal system where that norm is valid,
the realization of the conduct α by the legal subject ag1 has as
a consequence that a legal subject ag2 ought to be authorized

to realize the conduct β (usually, as a way to sanction the
realization of α by ag1).

A variety of decorations (time, location, etc.) can be added
to the basic imputation form of legal norms, to enrich it with
information specific to a given situation. Also, contextual con-
ditions can be added to conducts, both in the conditions and
in the consequences of imputations, to increase the complexity
of the legal norms that formal imputations can capture.

This way of formally presenting the concept of legal norm
makes explicit that legal norms are operational elements of
systems (the legal systems), where agents are present (as legal
subjects), which are put into operation on the basis of the
conducts of the agents, and whose fundamental semantical
model has a dynamical, not of a logical, character.

7 The Proposed Architecture for Legal
Systems of Agent Societies

We base the architecture of agent societies proposed here on
an operational reading of Kelsen’s theory of legal systems.
Briefly, the result of such operational reading is the following5.

7.1 Legal Systems of Agent Societies,
Formally Defined

Let AgSoct = (Popt,Orgt,MEnv t,SEnv t, Impt,Uset)
be the time indexed-structure of the agent society AgSoc.
The legal system of AgSoc is a time-indexed structure:

LSysAgSoc = ({LOrd t}t∈T , {LOrgt}t∈T , {RLFctt}t∈T ,
createlnrm, deroglnrm, createlauth,

cancellauth, recordlfct , deletelfct)

where:

• LOrd t is the legal order (the set of legal norms offi-
cially acknowledged as valid by the legal system) at
time t;

• LOrgt is the system of legal organs (the set of agents
and agent organizations officially operating on behalf
of the legal system) at time t;

• RLFctt is the record of legal facts (the set of social
facts officially accepted as such by the legal system)
at time t;

• and the operations are:

– createlnrm, of creation of legal norms, which includes
a new legal norm in LOrd t;

– deroglnrm, of derogation of legal norms, which ex-
cludes a legal norm present in LOrd t;

– createlauth, of creation of legal authorizations, which
includes a new legal authorization in RLFctt;

– cancellauth, of cancellation of legal authorizations,
which excludes a legal authorization present in
RLFctt;

– recordlfct , of recording of legal facts, which includes
a new legal fact in RLFctt;

– deletelfct , of deletion of legal facts, which excludes a
legal fact present in RLFctt.

5 See [7] for the full account of the resulting operational semantical
model of legal systems.

5

7.2 The Proposed Architecture

The formal account of Kelsen’s concept of legal system, pre-
sented above, motivates the architecture of legal systems of
agent societies pictured in Figs. 4 and 5.

Figure 4 shows the location of the the three main public
symbolic components of legal systems, namely, the legal order
(LOrd), the record of legal facts (RLFct) and the current set
of legal demands (LDmd , a subset of RLFct).

Given the public character of those symbolic components,
they are taken to be stored in the symbolic environment of
the agent society, so that they can be accessed by every agent
or agent organization. The meaning of the arrows is the same
as in Fig. 5.

Figure 5, on its turn, gives a schematic view of the main
components of the internal organization of a legal system
LSys. The figure shows the three main types of legal organs
of the legal system:

1. the conduct monitor (CMon), responsible for monitoring
the conducts (behaviors and interactions) of the agent or-
ganizations, and of the agents while performing social roles
in the society;

2. the sanction executor (SExc), responsible for executing the
sanctions that should be applied to the agent organizations
and to the agents, for the behaviors and interactions that
they performed, and which dit not complied with the law;

3. the norm issuer (NIssr), responsible for creating new legal
norms and abrogating existent ones (either general legal
norms or individual ones), in response to the legal demands
presented by agents or agent organizations, when acting as
legal organs validly authorized to place such demands.

Figure 5 also shows the access rights those types of legal
organs have on the three main public symbolic components
of the legal system: either reading or reading-and-writing.

Notice how, in general, agent organizations as well as in-
dividual agents implementing legal roles in the society have
reading-and-writing access right to the current set of legal
demands, but only reading access right to the legal order.

Notice, also, that any of the above three types legal organs
may be instantiated either as a simple legal role (for instance,
a judge acting as a law emitter) or as an organizational unit
(for instance, a parliament as a law emitter). The only re-
quirement for the validity of those instantiations is that they
be validly authorized by the legal system itself.

The figure also shows that legal systems are concerned es-
sentially with the organizational structure of the agent society
(the roles that the individual agents perform in agent society,
and with the organizational units they implement), not with
its populational structure (not with the agents themselves).

This should be understood clearly: to be a subject of a legal
system is already to perform a legal role in the society (two
common types of subjects of legal systems are, for instance,
the citizens and the foreigners of the society). This is so be-
cause it is possible that the legal system of the society restricts
its scope of application to just a subset of the population that
inhabit the area in which the legal system is considered to be
valid, leaving the rest of that population at the margin of the
legal system (for instance, treating them as “things” or “ani-
mals”, which can even be owned by the subjects of the legal
system).

Figure 4. The locations of the organizational part (system of
legal organs) and of the symbolic part (the public symbolic

components) of the legal system of an agent society.

Figure 5. Conceptual model LSys of the proposed architecture
of legal systems of agent societies (which is partly included in Org

and partly in SEnv , see Fig. 4).

Notice, on the other hand, that the organizational part of
the legal system LSys (its system of legal organs) is part of
the organizational structure Org of the society on which it
operates , as illustrated in Fig. 2.

6

Figure 6. Sketch of a simulation model for the execution phase
of a public policy, and for the legal system that supports it.

8 A Sample Application: Modeling Public
Policy Systems and the Legal Systems
that Support Them

In [9], an agent-based model for the simulation of the exe-
cution phase of public policies was introduced, taking as a
basis a simple sequential model for the policy cycle of public
policies that concerned with the adequate use of shared public
resources [15].

A case study was conducted concerning the modeling and
simulation of public policies for controlling fishing activity
during the Piracema (fish reproduction period) in Brazilian
rivers. Fish populations were treated as resources for common
use by fishermen and fish industry.

Fig. 6 shows, in a generic form, the various types of legal
organs involved in the formulation and operation of the public
policy considered in the simulation model [9]. The arrows are
like in Fig. 2.

The public policy, directed toward the management of the
shared public resources, and made positive in the form of a
set of national laws and policy regulations (i.e., administra-
tive plans and norms), is jointly formulated by the National
Government and the National Agency that is responsible for
those shared resources.

In formulating policy regulations, the National Agency has
to abide to national laws (issued by the National Govern-
ment) and to international regulations (issued by the Inter-
national Agencies concerned with that type of resource).

Policy officers operate the public policy by following the
policy regulations issued by the National Agency, applying
it to the resource users, according to the ways they use the
resources.

One can easily picture some of the legal environments (com-
bined sets of legal systems [6]) involved in the model:

1. the set of international regulations constitute an external
legal environment for the action of the national govern-
ment ; it serves as a basis for the constitution of an internal
legal environment, constraining the national laws that the
national government can issue;

2. an issued policy regulation, on the basis of the national laws,
constitutes a sectorial legal environment for the resource
users;

3. the policy regulation and the national laws also constitute
a sectorial legal environment for the joint operation of the
national agency and its officers.

One can immediately see another possible application for
such model: it could be embedded in a decision support sys-
tem used by the politicians and administrators involved in the
problem of managing a shared public resource.

The model would be able to support, regarding legal issues,
the live participation of users in the simulation of some of
the social actors (individual agents, agent organizations, legal
organs) present in the situation.

Legal decisions concerning the situation could be essayed,
on the basis of such “participatory simulations”. That would
evince the importance of having an explicit, sound, and com-
plete embedding in the system of the legal aspects at stake:
the decision system would be able to immediately indicate the
legal consequences, for the simulated situation, of the actions
that the users realize in the simulation.

9 Discussion

As already mentioned, this paper is based on operational
reading of Kelsen’s theory of legal systems, introduced in [7].
Drawing the architectural model of legal systems from such
source immediately construed it as an operational semantical
model, directly bound to the model of agent societies.

These two features (the operational character and the bind-
ing to the adopted model of agent societies) serve to contrast
the proposed architectural model from the models of norma-
tive systems usually adopted in the current approaches (see,
e.g., [1, 2]) to the issue of norms in multiagent systems:

• the adoption of a full-fledged model of agent societies, with
each agent society endowed with a full-fledged legal system
of its own;

• the founding of the model on an operational semantical ac-
count of the structure and functioning of the legal systems,
instead of a deontic logical approach, mostly limited to the
legal orders of the legal systems;

• the binding of the legal systems to the organizational
structure of their underlying agent societies (organizational
roles, agent organizations, etc.) instead of their direct bind-
ing to the agents of the societies.

In addition, the analysis of the conditions of structural and
functional entanglement of agent and human societies points
to the particular importance of the internal constitution of
full-fledged legal systems in norm-critical agent societies, as
conceptualized below, in the Conclusion.

7

10 Conclusion: Compliance-Critical Agent
Societies

This paper takes as given that agent societies whose actions
and decisions can have legal and moral consequences for the
human societies with they are entangled should have their
actions and decisions verified and accredited by the legal sys-
tems of those human societies.

The paper submits that the most efficient, effective and se-
cure way of providing that verification and accreditation, in
view of the openness of the agent societies, is through the
verification and accreditation of legal systems constituted in
those agent societies. That should guarantee also the correct-
ness and legal validity of the information about those actions
and decisions, provided by the legal systems of the agent so-
cieties to the legal systems of the human societies.

The architecture for legal systems of agent societies pro-
posed here aims at easing the constitution of such verified
and accredited legal systems. It supports the entanglement of
agent societies wit a multiplicity of human societies and their
varied legal systems, including the international law, which is
important in what concerns the international commerce.

Finally, we submit that agent societies endowed with legal
systems of their own should be taken as a specific form of
critical systems (see, e.g., [16]), even if their operation cannot
result in physical damages, risks for human life, or economic
losses: legal, moral, political, or other types of social damages
should be enough to warrant that classification.

In consequence, it seems sensible to require that the devel-
opment of agent societies endowed with legal systems of their
own, operating as a specific type of compliance-critical agent
societies, be subject to the formal methodological care that is
usually given to the other types of critical systems.

How far, however, is the current proposal from the avail-
able multiagent systems platforms? Not too far, we think. For
instance, the Agents & Artifacts model [21], as supported by
the JaCaMo platform [3], has proved to be enough not only
to support artifacts reifying organizational units [17], but also
artifacts reifying components of legal systems [9].

As far as we know, no full-fledge legal system has been de-
fined and implemented for agent societies. Such a work re-
quires, however, not only the adoption of an architectural
model for the legal system, as the one we have proposed here.
It requires also the detailed specification of the contents of
the legal norms of the legal system, of the rules of practice
of its legal organs, and of the ways the legal norms and the
practices of the legal organs interact with the legal norms and
legal practices of the human society to which the agent society
is to be entangled. That, of course, is a type of work different
from the architectural work that we have presented here.

Acknowledgments

The author thanks the anonymous reviewers for their very
useful remarks.

REFERENCES

[1] Guido Boella, Leendert van der Torre, and Harko Verha-
gen, ‘Introduction to normative multiagent systems’, Compu-
tational and Mathematical Organization Theory, 12, 71–79,
(2006).

[2] Guido Boella, Leendert van der Torre, and Harko Verhagen,
‘Introduction to the special issue on normative multiagent
systems’, Autonomous Agents and Multiagent Systems, 17,
1–10, (2008).

[3] Olivier Boissier, Rafael Bordini, Jomi Fred Hübner, Alessan-
dro Ricci, and Andrea Santi, ‘Multi-agent oriented program-
ming with JaCaMo’, Science of Computer Programming,
(2011).

[4] Antônio Carlos Rocha Costa. On the bases of an architec-
tural style for agent societies: Concept and core operational
structure. Open publication on www.ResearchGate.net - DOI:
10.13140/2.1.4583.8720, 2014.

[5] Antônio Carlos Rocha Costa, ‘Proposal for a notion of mod-
ularity in multiagent systems’, in Informal Proceedings of
EMAS 2014, eds., M. Birna van Riemskijk, Fabiano Dalpiaz,
and Jürgen Dix. AAMAS @ Paris, (2014).

[6] Antônio Carlos Rocha Costa. On the legal aspects of agent
societies. Open publication on www.ResearchGate.net - DOI:
10.13140/2.1.4345.7923, 2014.

[7] Antônio Carlos Rocha Costa, ‘Situated legal systems and
their operational semantics’, Artificial Intelligence & Law,
43(1), 43–102, (2015).

[8] Antônio Carlos Rocha Costa, ‘Moral systems of agent soci-
eties: Some elements for their analysis and design’, in Proc.
EDIA16 - Workshop on Ethics in the Design of Intelligent
Agents, The Hague, (2016). ECAI 2016.

[9] Antônio Carlos Rocha Costa and Iverton Adão da Silva dos
Santos, ‘Toward a framework for simulating agent-based mod-
els of public policy processes on the Jason-CArtAgO plat-
form’, in AMPLE 2012 - 2nd International Workshop on
Agent-based Modeling for Policy Engineering, Montpellier,
(2012). ECAI 2012.

[10] Antônio Carlos Rocha Costa and Graçaliz Pereira Dimuro,
‘A minimal dynamical organization model’, in Hanbook of
Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models, ed., V. Dignum, 419–445, IGI Global, Hershey,
(2009).

[11] Ronald Dworkin, Taking Rights Seriously, Harvard Univ.
Press, 1977.

[12] J. Ferber and O Gutknecht, ‘Aalaadin: a meta-model for the
analysis and design of organizations in multi-agent systems’,
in International Conference on Multi-Agent Systems - IC-
MAS 98, ed., Y. Demazeau, pp. 128–135, Paris, (1998). IEEE
Press.

[13] H. L. A. Hart, The Concept of Law, Oxford University Press,
2012.

[14] Social Mechanisms. An Analytical Approach to Social The-
ory, eds., Peter Hedström and Richard Swedberg, Cambridge
Univ. Press, Cambridge, 1998.

[15] Michael Hill, The Public Policy Process, Pearson Longman,
London, 2009. (5th ed.).

[16] Cris Hobbs, Embedded Software Development for Safety-
Critical Systems, CRC Press, Boca Raton, 2015.

[17] Jomi F. Hübner, Olivier Boissier, R. Kitio, and Alessan-
dro Ricci, ‘Instrumenting multi-agent organisations with or-
ganisational artifacts and agents: Giving the organisational
power back to the agents’, Journal of Autonomous Agents
and Multi-Agent Systems, 20(3), 369–400, (May 2010).

[18] Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier, ‘De-
veloping organised multi-agent systems using the MOISE+
model: Programming issues at the system and agent levels’,
International Journal of Agent-Oriented Software Engineer-
ing, 1(3-4), 370–395, (2007).

[19] Hans Kelsen, General Theory of Norms, Oxford University
Press, 1991.

[20] Hans Kelsen, Pure Theory of Law, The Law Book Exchange,
New Jersey, 2009.

[21] Alessandro Ricci, Mirko Viroli, and Andrea Omicini, ‘Pro-
gramming MAS with artifacts’, in PROMAS @ AAMAS 2005
- Programming Multi-Agent Systems, eds., Rafael P. Bordini,
Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
volume 3862 of LNAI, pp. 206–221. Springer, (2006).

[22] Yoav Shoham, ‘Agent oriented programming’, Artificial In-
telligence, 60(1), 51–92, (1993).

8

Towards a Distributed Data-Sharing Economy

Samuel R. Cauvin, Martin J. Kollingbaum, Derek Sleeman, and
Wamberto W. Vasconcelos

Dept. of Computing Science, University of Aberdeen, U.K.
{r01src15, m.j.kollingbaum, d.sleeman, w.w.vasconcelos}@abdn.ac.uk

Abstract. We propose access to data and knowledge to be controlled through
fine-grained, user-specified explicitly represented policies. Fine-grained policies
allow stakeholders to have a more precise level of control over who, when, and
how their data is accessed. We propose a representation for policies and a mech-
anism to control data access within a fully distributed system, creating a secure
environment for data sharing. Our proposal provides guarantees against standard
attacks, and ensures data-security across the network. We present and justify the
goals, requirements, and a reference architecture for our proposal. We illustrate
through an intuitive example how our proposal supports a typical data-sharing
transaction. We also perform an analysis of the various potential attacks against
this system, and how they are countered. In addition to this, we provide details of
a proof-of-concept prototype which we used to refine our mechanism.

1 Introduction

Large scale data sharing is important, especially now, with more open societies of com-
ponents such as Smart Cities [25,3] and the Internet of Things [1,11] creating data
sharing ecosystems. Currently, data access policies tend to be managed centrally, which
comes with a number of problems such as information ownership and reliance on a
centralised authority.

In [16] the author suggests taking a “data-oriented view” and developing methods
for treating access policies and data items as a single unit. This allows data to prescribe
their own policies, which can be checked when the data is shipped around between data
management systems. Such a proposal of tying policies directly to data is described by,
e.g., [24] as policy-carrying data that allows the specification of fine-grained policies
for data items. In this paper, we present novel policy-based data sharing concepts for
distributed peer-to-peer networks of data providers and consumers. Our working hy-
pothesis is that it is possible to (a) create a fully distributed mechanism to facilitate data
sharing with security guarantees, and (b) to implement a fine-grained control over how
data may be exchanged between stakeholders.

We propose access to data and knowledge to be controlled through fine-grained,
user-specified explicitly represented policies. These policies are used to regulate data
exchange in a peer-to-peer environment in which some peers have data which they
want to provide (called Providers) and some peers have data which they want to acquire
(called Requestors). Providers set policies that establish how their data can be accessed
and by whom. These policies can be defined with different levels of granularity, allow-
ing peers precise control over their data.

Our policies may express general regulatory statements such as, for example, “no
drug records and medical records can be obtained by the same party”, or more specific,
such as “I will only provide 10 records to each person”. Fine-grained policies allow
stakeholders to have a more precise level of control over who, when, and how their data
is accessed. We propose a representation for policies and a mechanism to control data
access within a fully distributed system, creating a secure environment for data sharing.
We discuss data as if it were stored in a database, but this could be expanded to cover
any form of structured information.

These policies will be enforced by a distributed infrastructure of “policy decision
points” (taking inspiration from the traditionally centralized XACML PDP architec-
ture [7]) throughout the network. We regard a data exchange or sharing activity be-
tween peers (provider and requestor) as a transaction. Transactions are recorded and
are an important means for checking policy compliance. During a data request, trans-
action records are taken into account to test whether a requestor complies with the
policies specific to such a request and the data involved. Due to the distributed nature
of making policy decisions at peer-to-peer network nodes, a requirement for encrypting
information components to be exchanged for this decision process arises. We take in-
spirations from encryption concepts in distributed applications, such as CryptDB [20],
BlockChain [21,10] and Bitcoin [18].

This paper focuses on providing a simple case example demonstrating the feasibility
of this mechanism, including reasoning on encrypted data using the mechanism. Ours
is a starting point from where more sophisticated policy representations and reasoning
mechanism can be developed, with more expressive and flexible representations for
policies to provide greater control to the user. The work presented here is an initial
investigation into this kind of reasoning process which can be made more sophisticated,
to address arbitrary deontic reasoning and more complex interactions.

Section 2 details a general example of a simple transaction between two parties and
then discusses the key components and concepts within our solution. Section 3 provides
an overview of the requirements and architecture of the system. Section 4 describes the
detail of a transaction scenario, discussing how each part of the mechanism is involved
in the process. Section 5 evaluates the mechanism’s resistance to standard attacks. Sec-
tion 6 discusses a proof-of-concept implementation of our solution. Section 7 provides
an overview of related research. Section 8 discusses the limitations of our solution,
provides overall conclusions, and outlines future work.

2 Policy Compliance

In our approach, so-called “transaction records” play an important role in whether any
action related to sharing data is compliant with the policies relevant for this data. To il-
lustrate how our mechanism performs a simple transaction, we consider a general case
where two parties, a so-called “requestor” and a “provider”, want to exchange data.
Such a transaction represents a secure, tamperproof interaction between requestor and
provider. Following this example we discuss transaction records (Section 2.1), numeri-
cal encoding of data elements (Section 2.2), and policies (Section 2.3) in more detail.

The requestor will be represented by R, the provider by P, and the data element by
D. The transaction will proceed as follows:

1. Requestor R sends a data request for data D to provider P.
2. P processes this request, and if the provider possesses D, it will create a list of poli-

cies relevant to D or R. If any policy in this list prohibits sending D to R (regardless
of transaction records), then the data request will be denied, a transaction record
will be generated and sent to R, and the process will terminate here. If not, P will
send a message to R containing the policies associated with D.

3. R will reason on these policies to determine which transaction records are “rele-
vant” (see Section 2.4). To achieve this, the mechanism loops through each policy
and extracts a list of unique data elements referred to in the policy. At the end of
this loop the list will contain each “relevant” data element (encoded as a number as
discussed in Section 2.2).

4. The mechanism will then identify which of R’s transaction records are relevant
using Algorithm 1 (in Section 2.4).

5. P receives records from R and needs to determine if any of the records prohibit the
provision of D. For each of P’s policies the mechanism can process each record to
determine if the data element is subsumed by a data element of P, and thus if the
conditions of P hold. While processing, a cumulative total for each type of record
will be kept. This total can be calculated without decrypting, as it requires only
basic arithmetic on numerical entries. After processing all records, this total will be
checked against the policy to determine if it holds or not. The order of policies is
important, as earlier policies supersede later policies, that is as soon as a policy is
triggered then the reasoning process can cease.

6. If this policy is a P (permit) policy, then sending D (the requested data and a record
of the transaction, encrypted in a single package) to R is approved, and D will be
sent from P to R.

7. R will decrypt the package, adding the transaction record to its records, and store
the data. This single encrypted package is received by the mechanism, ensuring that
the transaction record will be stored – as ignoring it will prevent receipt of data.

2.1 Transaction Records

Our policies relate data collections and events following the usual semantic of norms/pol-
icies (e.g., [19,22]), whereby events and their authors are explicitly represented (to-
gether with additional information such as time, location, duration, etc.) and used to
check for (non-) compliance. In our proposal, events are named transaction records,
and are stored encrypted within the information kept by each peer. Whenever a policy
needs to be checked for its applicability, a subset of transaction records is retrieved from
the encrypted storage, and used to compare the credentials/identification of the peer, as-
sess the applicability to data elements currently available and verify if the conditions of
our policies hold.

Transaction records are tuples of the form 〈dataset ,m〉. The dataset component
refers to an ontological term, which is defined in one of the ontologies held by peers.
Policies and transaction records refer to descriptions of data elements – these are labels

describing, for instance, fields of a data base or names of predicates of an ontology [4].
We adopt a numeric representation for these labels, and rather than using, for instance,
nameOfClient or fatherOf (to represent, respectively a field of a database or a predi-
cate), we use a numeric encoding.

2.2 Numerical Encoding of Data Elements

Policy checking is performed on encrypted transaction records without decrypting them,
and performing operations on encrypted numerical data is far easier than on encrypted
string data. To facilitate this, we introduce a numbering scheme that represents such a
hierarchy of concepts and sub-concepts, including the encoding of concept properties.
For this, we assign to each level in the subsumption hierarchy found in an ontology
a code out of the range of [0 .. 99]: when we use the notation [00..99]1, [00..99]2,
[00..99]3, then we are expressing that a concept hierarchy has three levels (where the
subscripts indicate levels), and each concept can relate to a maximum of 100 (0 to 99)
sub-concepts. By concatenating the level codes from a top-level concept to a particular
sub-concept, we arrive at a unique code for each concept in a hierarchy. Consider the
taxonomy below (with the encoded number at the start of each line):

010000 Prescriptions
010100 Name
010200 Drugs
010300 Patient Notes

010301 Other Medications
010302 Other Conditions

010400 Renewal Date
020000 DrugX

020100 Trial Number
020200 Patient Notes

020201 Other Medications
020202 Other Conditions

020300 Recorded Side-effects
020400 Treatment Effectiveness

030000 Vehicles
030100 Motorcycles

030101 Owner
For example, in the above taxonomy, Vehicles is the third top level concept [03]1[00]2[00]3.
A concept below that, Motorcycles, is [03]1[01]2[00]3 which indicates it is the first sub-
concept of Vehicles. The size of each level and total number of levels can be increased,
but this will also increase the size of each encoded number. The subsumption relation
between two encoded numbers allows us to capture “is-a” relationships among concepts
of a taxonomy, as in 030100 v 030000.

2.3 Policies

Policies enforce how data can be shared within the network. Some are network-wide
(e.g., “no drug records and medical records can be obtained by the same party”), while

others can be specified by an individual provider (e.g., “I will only provide 10 records
to each person”). These policies are stored by each peer locally.

We define our policies as follows:

Definition 1 (Policies). A policy π is a tuple 〈M, I,D,P〉 where
– M ∈ {O,F,P} is a deontic modality/operator, denoting an obligation (O), a pro-

hibition (F) or a permission (P).
– I ∈ {id1, . . . , idn} is a unique peer identifier
– D ∈ T is a descriptor of a data element (cf. Def. 2)
– P = L1 ∧ · · · ∧ Lm is a conjunction of possibly negated literals (cf. Def. 3)

A sample policy could be as follows: 〈P, id1, 010000, 5, 0, 1〉. Our policies above
refer to descriptions of data elements – these are labels describing, for instance, fields
of a data base or names of predicates of an ontology [4]. We adopt a numeric represen-
tation for these labels, and rather than using, for instance, nameOfClient or fatherOf (to
represent, respectively a field of a database or a predicate), we use a numeric encoding.
Our taxonomies are subsets of natural numbers with a subsumption relationship, and
are thus defined:

Definition 2 (Taxonomy). A taxonomy T ⊂ N is a subset of natural numbers. We
define a reflexive and transitive subsumption relation v⊆ T × T, over a taxonomy T
to define its structure.

An example of a taxonomy is given in Section 2.2.
Our policies allow the representation of conditions under which the policy should

hold – this is what the component P of Def. 1 is meant for. We have designed a simple
vocabulary of “built-in” tests which are relevant to our envisaged application scenarios,
and these are defined below:

Definition 3 (Literals). A literal L is one of the following, where D ∈ T (a descriptor
of a data element), ◦ ∈ {<,>,≤,≥,=} is a comparison operator, and n ∈ N is a
natural number:

– noRec(D) ◦ n – it holds if the number of retrieved instances of data element D
satisfies the test “◦ n”.

– lastReq(D) ◦ n – it holds if the (time point of the) last retrieved instance of data
element D satisfies the test “◦ n”.

– lastAccess(D) ◦ n – it holds if the (time point of the) last granted access to an
instance of data element D satisfies the test “◦ n”.

– ⊥ and > represent, respectively, the vacuously false and true values.
We make us of a simple account of time which can allow all events to be associated with
a natural number.

In the remainder of our presentation, however, we make use of a “customised” ver-
sion of policies, as these are more commonly used in our envisaged scenarios. We use
the following shorthand:

〈M, I,D, (noRec(D) < n ∧ noRec(D′) < n′)〉 ≡ 〈M, I,D, n,D′, n′〉

Some examples of policies are as follows:

– π1 = 〈P, id1, 010000, 5, 0, 1〉, that is, peer id1 is permitted to access 5 items of
data element 010000; the remainder of the policy condition is idle (it imposes no
further constraints).

– π2 = 〈P, id2, 020200,∞, 0, 1〉, that is, peer id2 is permitted to access unlimited
(∞ stands for a very high natural number) items of data element 020200; the re-
mainder of the policy condition is idle, that is, noRec(0) < 1 imposes no further
restrictions.

– π3 = 〈P, any , 010200, 5, 010000, 1〉 that is, any peer (denoted by the any iden-
tifier) is permitted to access 5 items of data element 010200; provided that they
accessed less than 1 record of 010000.

This is a simple representation of policies which ignores the context of time and presents
a simple example. The language of policies can be more expressive for the mechanism
we are proposing. A more expressive language would allow more complex interactions
between policies, which would also require a more complex reasoning process (we give
potential expansions in Section 8).

In Def. 1 we discuss the notion of obligations, which can be thought of as deferred
policies: actions to be taken (or not taken) after data has been received from a provider
for a pre-specified period of time (or possibly indefinitely). For instance, an obligation
could be defined that requires the requestor to provide 5 records of data element 010000
to the provider in exchange for 10 records of data element 020000. The encounter in
Section 2 could also cater for situations where obligations can be transferred between
parties. For example, with three parties A, B, and C: A provides data to B, and B is then
obliged to provide data to A. B then provides data to C, and transfers their obligation to
C. Now C is obliged to provide data to A, and B has no obligation to A.

We define in Equation 1 how to check if two data elements D and D′ encoded in our
numbering scheme of Section 2.2, are subsumed by one another. The definition makes
use of two extra parameters, namely, BS which provides the size of each band (2, in the
above example), and ZB which provides the number of zero-bands in D′ (for instance,
020200 above has 1 zero-band [02][02][00]; calculating the number of zero bands is
trivial for an unencrypted integer):

D vBS
ZB D′ if, and only if, bD/10BS×ZBc = bD′/10BS×ZBc (1)

Each peer is provided a copy of the encoded ontology upon joining the network. If
the ontology is too large, a subset could be provided containing concepts that the peer
deals with and each transaction would provide the “vocabulary” of the requestor. In this
way only a small amount of data is transferred when a new peer joins the network, but
peers will slowly converge towards holding a complete ontology as transactions occur.
Alternatively, the peer could be provided only with a URI; allowing them to download
the full encoded ontology at any time.

Automatic encoding of the ontology is fairly trivial. The superclass-subclass re-
lationships can be condensed into a simple tree structure; from this tree we can then
count the maximum depth and maximum size at each depth to determine number of
bands, and size of banding, respectively. This may take some time to complete, but this
operation only has to be performed once on network initialisation.

Alternative numerical encoding mechanisms have been suggested that used ring
theory, prime numbers, or multiples; however none seemed to precisely suit our needs.

Specifically, none could incorporate entailment information whilst retaining a math-
ematically simple comparison operation. Mechanisms of this type have been widely
explored [6,13], and these mechanisms could replace the one currently proposed. For
the purposes of our research we wanted to create a simple example encoding, however
others could have been used.

2.4 Finding Relevant Transaction Records

The mechanism itself chooses relevant transaction records to send to a provider, the
peer is unable to intervene. The challenge is ensuring that the records held by a given
peer are tamper-proof; this is achieved by storing records in an encrypted format, us-
ing the numerical encoding in Section 2.2. Equation 1 allows identification of records
that match a specific concept (or one of its parents). Using this information, and a rea-
soning process that references both policies and what is known about the requested
data, a subset of relevant records can be identified and sent to a provider. On receipt of
these records, the provider must also reason with them to determine if they violate any
policies.

The mechanism identifies relevant records by looping through each transaction
record and performing a numerical comparison operation, without decrypting the data.
Each transaction has an associated data element, which is compared to each data ele-
ment in the policies for the current transaction using Equation 1. If the test is passed,
then the transaction will be retained as a relevant record. When all records have been
processed, all relevant records will be sent to P. This process is detailed in Algorithm 1.

Algorithm 1 Finds Relevant Transaction Records
Require: Π (a set of policies), Records (a set of records)
Ensure: RelevantRecords (a set of relevant records)

procedure FINDRELEVANTRECORDS()
RelevantRecords ← ∅
for all R ∈ Records do

for all π ∈ Π do . Each data type referred to in policies
if encodedComparison(π,R) then . encodedComparison refers to Equation 1

RelevantRecords ← RelevantRecords ∪ {R}
end if

end for
end for

end procedure

The mechanism must be able to detect potential violations and protect against them;
either by updating policies, anonymising part of the data, or rejecting the request. When
making this decision the mechanism will check if the users identity allows them to
access the data, if they have fulfilled all past obligations, and if the records they have
provided would prohibit them from receiving the requested data.

When deciding whether to share data, both ends of the transaction are black-boxed;
this prevents either the requestor or provider from tampering with records. The en-

P2

P1PnHostcache

Ω1, Ω2, ..., Ωn
Ω

Database

...P3

Encoding
Mechanism

Communication
Mechanism

Encoding
Table

Communication
MechanismPeers

Records

Data

Policies

Encoding
Table

Peer

A B

...

1

2 3

4

6 5

7
[L2] Decision
Mechanism

[D2]
[D1]

[D3] [D4]

[L1] [L3]Encryption
Mechanism

Fig. 1. Architecture

crypted records and (unencrypted) policies get passed into a black-box mechanism,
which returns a boolean value to indicate if the transaction can go ahead. If the transac-
tion is denied, then an encrypted record will be returned to the requestor that contains a
justification (and full proof of reasoning) as to why it was denied. This can then “boot-
strap” the reasoning process next time; as this record will be sent (by the requestor) as
a relevant record. The provider can then examine the proof and decide if it still applies,
reducing reasoning overheads.

The other challenge is designing the selection procedure in the mechanism so that
just the right amount of information can be shared; since peer-to-peer connections are
opportunistic, the less information sent the better – however enough has to be sent to
allow the provider to make an informed decision about whether to share.

3 Requirements and Architecture

The hypotheses in Section 1 emphasise the aspects of the problem that we are concen-
trating on, and can be broken down further into the following requirements:

R1 To allow fine-grained (table and column level) control over data access policies.
R2 To ensure transaction records and data remain tamper-proof throughout the lifetime

of a transaction.
R3 To allow operations to be performed on encrypted transaction records, without ex-

posing those records to the user.
R4 To ensure that policies are enforced across the network and cannot be subverted to

the advantage of an attacker.1

An architecture to meet these requirements is presented in Figure 1. The architecture
above has two main components: the hostcache sub-architecture (A), and the peer sub-
architecture (B).

1 An attacker is any party (requestor, provider, or third party) who attempts to subvert the system.

It should be noted that our approach refers to data using database terms (tables,
columns, and rows); however this is a specific case for our broader solution. While we
assume that our mechanism will be used on data stored in a database, any knowledge
base could be used instead.

The hostcache sub-architecture (A), which follows established peer-to-peer host-
cache operations [2], has access to a collection of ontologies (obtained from many par-
ties), which are input to the encoding mechanism. The encoding mechanism outputs
the encoding table, which is a numerically encoded representation of the ontology (ex-
plained in Section 2.2). The hostcache also stores a collection of peer ids, each new peer
that contacts the hostcache will have its peer id added to the collection. The hostcache
processes requests from peers by generating ids, providing copies of the encoding table
to peers and providing sets of potential neighbours to enquiring peers. The hostcache is
a central element whose main functions are to generate ids for each peer, and to provide
a list of potential neighbours on request. It also handles the one-time encoding of the
underlying ontology.

The peer sub-architecture (B) is a collection of storage and logic components. The
encoding table (D2) on the peer is obtained directly from the hostcache, and is only
referred to by the decision mechanism (L2). The decision mechanism is responsible for
performing the decision operations discussed later in this document (whether to pro-
vide data, what records are “relevant”). The peer also holds data (D1 – the data which
it provides), records (D4 – encrypted transaction records), and policies (D3 – policies
detailing how data is shared, discussed in Section 2.3). There is also the communica-
tion mechanism (L1) which handles message processing (both receiving and sending),
generating data requests, and invoking the decision mechanism. Lastly is the encryp-
tion mechanism (L3), which can encrypt and decrypt data and record packages (but not
records themselves) received from the network (discussed further in Section 4). While
not noted in the architecture, each peer also holds an encrypted id, issued by the host-
cache, that confirms who they are.

Each component in the peer sub-architecture is needed to fulfil at least one require-
ment. Requirement 1 needs the decision mechanism and policies. Requirement 2 needs
all components except policies. Requirement 3 needs the decision mechanism, encryp-
tion mechanism, encoding table, and records. Requirement 4 needs the communication
mechanism, encryption mechanism, and encoding table.

We engineer the behaviour of peers so as to make contact with the hostcache, estab-
lish neighbours, and then go into a loop responding to messages and requesting data.
The protocol adopts non-blocking message exchanges, that is, peers do not wait for
replies (as communication is unreliable and these may never arrive or be delivered).
The interactions in sub-architecture B are numbered to represent a rough interaction
protocol, but as interactions occur in a distributed environment they cannot be consid-
ered as sequential operations on a single peer. More accurately, there are four (main)
paths through the architecture diagram for two interacting peers. Peer id1, upon receiv-
ing a data request from Peer id2, will follow steps 1, 2, 4, 1 (from the annotated arrows
of Fig. 1). Peer id2 will follow steps 1, 2, 3, 1. Peer id1 will follow steps 1, 2, 4 and
then 5, 6. Peer id2 will then follow steps 6, 7.

4 Illustrative Scenario

We illustrate our solution with a scenario in which we consider two parties: P (the
provider) and R (the requestor). The provider is a research lab that developed DrugX,
and tracks prescriptions of DrugX. The requestor is a health authority who regulate all
prescriptions for the region they operate in attempting to counteract the side effects of
Drug X. This example uses a subset of the encoding table from Section 2.2.

The requestor wishes to get information on the trials carried out on DrugX by
the provider, so sends a data request for ten 020000 (DrugX and subclasses) records.
The provider checks its policies and finds nothing prohibiting the requestor’s access to
020000, so the provider then sends the following (relevant) policies to the requestor:

– 〈P, any , 010300,∞, 020200, 1〉 – Deny 010300 to anyone who has 020200
– 〈P, any , 020200,∞, 010300, 1〉 – Deny 020200 to anyone who has 010300

The requestor loops through these policies and extracts the following data ele-
ments: 010300 and 020200. The requestor then has to check through their transac-
tion records (the format is 〈dataset ,numberOfRecords〉): 〈010100, 50〉, 〈010301, 50〉,
〈010302, 50〉, 〈010100, 10〉, 〈010200, 10〉, 〈010400, 10〉

Each relevant data element is then compared with the records to determine its en-
tailment, following Equation1, that is, 010301 vBS

ZB 010300, and 010302 vBS
ZB 010300

hold; none of the remaining cases hold.

For each pair (D,D′) we must test both D vBS
ZB D′ and D′ vBS

ZB D, as the test
will only capture if the first element is a subclass of the second. Applying both tests
allows both relationships to be captured. Of the six records two of them are found to
be relevant: 〈010301, 50〉 and 〈010302, 50〉. These records are now sent to the provider
to be reasoned on to determine if they violate any of their policies. This process is
similar to the process performed by the requestor, so we will not discuss it in as much
detail. Performing the same basic loop the mechanism determines that Policy 2 (Deny
020200 to anyone who has 010300) holds for both records. At this point, the provider
can do one of two things: the Data Request can be rejected (a justification record will be
generated and sent to the requestor), or part of the requested data can be omitted. The
latter will be used in this situation, as the policy only prevents a specific part (020200)
of the requested data (020000) from being sent.

The provider then generates records for the current transaction (〈020100, 10〉, 〈0203-
00, 10〉, 〈020400, 10〉), and assembles the result package (containing 10 records of
020100, 020300, and 020400). These are then encrypted together using the requestor’s
public key2 and sent to the requestor. The requestor’s mechanism receives this pack-
age and decrypts it using the requestor’s private key. The “receipt” is added to the re-
questor’s collection of transaction records and the mechanism returns the extracted data
to the requestor, completing the transaction.

2 This is an extra security precaution, assuming that all peers have Public/Private Key pairs
ensures that data can be sent across a peer-to-peer network securely.

5 Analysis of our Solution

We evaluated our proposal by exploring many cases and concluded that there was no
incentive for any of the participants to subvert the system, as it provided no advantages.
Below we provide an analysis of our proposal against classic attacks.

– Impersonation – All peers, in order to join the network, must be given a unique
encrypted id by the host cache. Ids cannot be falsified as only the hostcache has
keys to generate these appropriately and the chances of falsifying ids coherently
are very low.

– Modification of policies – Providers could modify policies during transactions,
however doing so could cause them to receive irrelevant transaction records. These
irrelevant records could cause them to make an incorrect decision to provide or
withhold data, which they would have no incentive to do.

– Modification of transaction records – Transaction records cannot be tampered with
as they are encrypted throughout exchanges; attempts to tamper with records would
need to break the encryption mechanisms.

– Man in the Middle – Transaction records and data both travel encrypted. Policies
are transmitted unencrypted, but it would be trivial to create a RSA-like encryption
to transmit them. Man-in-the-middle can not access the data as it travels encrypted.

– Denial of Service (DOS) – Requiring a hostcache creates a vulnerability to DOS at-
tacks, however this DOS would only affect new peers joining the network. Existing
peers in the network would be able to function as normal. A DOS could also target
individual peers, but this will not have a major effect on the rest of the network.

– Subvert timestamp in records (Provider) – This timestamp is generated by the
mechanism, so cannot be altered. The provider could potentially alter it by garbling
the record, but this would only serve to disadvantage them in the future.

– Provider sends malformed record – A malformed record will never be considered a
“relevant” record, as it cannot be processed properly by the mechanism, so if they
are sent, they will be ignored. There is no incentive for a peer to send malformed
records. To prevent this record from remaining indefinitely a record purging func-
tionality periodically scans the set of records and discards those elements which
cannot be processed/parsed.

– Requestor does not record transaction – The mechanism forces transaction records
to be stored. Providing the data and updating the set of records are two stages of an
atomic operation carried out within the black-box mechanism.

– Code tampering – Tampering with code is impossible, as it is provided as a black-
box.

– Record fabrication – Records could be fabricated, but the chances of producing
anything meaningful are very low, since these have to be encrypted and the peers
do not hold the keys or indeed have access to the encryption mechanism by itself.

– Sybil Attack3 /Fake peer generation – The only purpose to generating extra peers
would be to generate fake records for yourself, but there is no benefit from having

3 A sybil attack [8] happens when one of the participants generates many fake ids to skew the
balance of power in one’s own favour, as in, for instance, voting.

extra records as these will not make approval more likely, moreover, it could cause
data requests to be rejected.

– Data Modification – After a peer receives data from another peer, that data is no
longer under the control of the data provider. We propose a way of mitigating this by
adding the concept of data “ownership”. All data within the network can be stored
in “packages” encrypted with the id of the original owner. Anyone can decrypt
these packages to get the data, but they are only able to encrypt data packages with
their own id. This means that the original source of the data is in no way associated
with the data after it has been modified by a third party.
Our solution incorporates a small amount of centralisation: a one-time check-in

when connecting to the network, to aid with system functions. It may be possible to
design a system where this is not the case, but we would have to make trade-offs (no
verified identities, no shared encoding, cold-start issues, etc.) to achieve this. This minor
centralisation ensures that no one “owns” all the data within the system, and also creates
a robust network for data exchange; the only contact with a central authority (hostcache)
is when a peer joins the network, after that no data is sent to the hostcache.

6 Proof of Concept Implementation

We investigated the design space by creating a proof-of-concept prototype4 to perform
the operations of single peer with a set of simulated neighbours. Our prototype does
not implement full message passing, but does demonstrate the mechanism which we
have described. The prototype is implemented in Java, so some definitions have been
adapted to fit with object-oriented programming concepts. The cryptography imple-
mented in the prototype is not a full encryption mechanism, but simulates one through
the use of numerical objects that can have simple mathematical operations performed on
them without exposing their value. If we ignore these adaptations, our implementation
follows the peer architecture (part B of Fig. 1) faithfully.

To reflect the modularity of our architecture we have introduced features to cus-
tomise the simulation using a number of parameters, currently specified as variables
within the code. These parameters supply the (ontology) encoding table, data, records,
and policies of each neighbouring peer. The simulation itself tracks a number of metrics
to provide an analysis of performance. The policies implemented within our prototype
follow our policy language provided in Def. 1, specifically they make use of the short-
hand we describe in Section 2.3.

We have also performed a feasibility analysis by using this prototype to simulate
an extended version of the scenario from Section 4. The scenario considers a single
peer attempting to get data from four neighbours that each have data and policies. This
simulation completes in a single cycle (each neighbour is queried for each desired data
item once) with all of the requested data being received. The prototype tracks which
peers provided the data, allowing this to be compared to their policies; through this we
observed that policies were not violated at any point.

4 The source code for our implementation is https://github.com/Glenugie/
REND-Peer

https://github.com/Glenugie/REND-Peer
https://github.com/Glenugie/REND-Peer

Using our prototype we tracked total number of messages sent between peers, total
simulation time, and the minimum, average, and maximum size of messages. Message
sizes are given in quantity of numbers transferred, with encrypted numbers taking twice
the space, and each array adding an extra number as overhead. 40 messages were ex-
changed, with a minimum size of 1 (initial data request), an average size of 4.5, and
a maximum size of 17. The simulation took a total of 10 milliseconds to complete, 2
milliseconds of which was the single cycle; the other 8 were network initialisation. This
time could be considered inaccurate as we envisage our mechanism running on a large
number of devices with little computing power; rather than the one powerful device that
our simulation was run on.

Implementing this prototype allowed us to locate and correct a number of incon-
sistencies in our mechanism. One such correction was to apply the encoded number
comparison from Equation 1 in pairs to capture entailment in both directions.

7 Related Work

Our investigation taps onto many disparate areas such as Smart Cities [25,3], Internet
of Things [1,11], BlockChain [21,10], bitcoin [18], and encryption [9,20]. Below we
review the work that we consider most relevant.

This paper draws upon the techniques and methods reported in [19], but it has a sig-
nificantly different focus, and most importantly, provides a distributed solution which
will scale up and is resilient to many kinds of attacks. Our proposal extends the idea of
combining data and access policies into one single computational entity with benefits
such as increased control over how your data is used. There have been other research
threads which also use the term “Policy Carrying Data” [23,24], which suggests simi-
lar concepts but without the focus on a distributed environment. They instead focus on
maintaining data policies when the data, and policies, are uploaded to the cloud.

Berners-Lee makes a case for an online Magna Carta [15] to protect the openness
and neutrality of the internet. The work being proposed here attempts to develop a
mechanism to support the normative principles promoted in Berners-Lee’s design [17].

Role Based Access Control (RBAC) could be seen as a similar line of work, though
with a stronger focus on a controlled environment. While work has been pursued to
begin addressing RBAC in a distributed environment [5,12,14,22], it has not been com-
pletely resolved.

One candidate for operations on encrypted data is homomorphic encryption schemes
[9] which are applicable to our proposal. This method of encryption allows operations
to be applied to encrypted data without decrypting. One limitation of this approach is
that a data request must specify the amount of data to be retrieved, and the result will
either be truncated or padded out. This method is semantically secure, i.e. given a ci-
pher c that encrypts either m0 or m1, adversary α (when given the two choices) has
probability of 1

2 + ε of guessing correctly. ε, called α’s advantages should be negligible,
else (informally) α has “broken” the semantic security.

Another candidate is CryptDB [20], though this is less suited to the required con-
text. CryptDB relies on a trusted proxy to process a user’s query and send it to the
database management system (DBMS), which then returns the decrypted result. This

seems problematic, as the proxy returns the result in a decrypted format (so, while the
DBMS has not seen anything decrypted, the decrypted result could be intercepted be-
tween proxy and user).

We note a substantial overlap between our proposal and initiatives such as BlockChain5

and Bitcoin6. BlockChain is a permissionless distributed database [21,10] based on
the bitcoin protocol [18] that achieves tamper resistance by timestamping a hash of
“batches” of recent valid transactions into “blocks”. Each block references the prior
timestamp, creating a cryptographically enforced chain. Blockchain requires either a
group of always-on data-store nodes, or for every individual “peer” to store a copy of
the full chain. There are important similarities between BlockChain and our proposal,
but BlockChain is centralised in nature and has high storage requirements on data store
nodes.

8 Conclusions, Discussions, and Future Work

We proposed a solution to enable the control of data through fine-grained, user-specified
access policies. This solution was designed to operate in a peer-to-peer scenario in
which some peers have data which they want to provide (called Providers) and some
peers have data which they want to acquire (called Requestors). Providers can set “poli-
cies”, i.e. rules which govern how their data can be accessed and also by whom. These
policies will be enforced by mechanisms throughout the network.

For simplicity we assume that a fixed ontology is provided on network initialisation,
and that this is then encoded by the hostcache. In the future, it would be possible for
this to be extended to a dynamic ontology where each peer reports their sub-ontology
on joining the network, which is then added to the master encoding table. This fixed
ontology allows for the correct banding size and depth to be determined for the encod-
ing. If the encoding is dynamic, one shortcoming is that it is then possible to run out of
encoding space; this can be offset by choosing a high starting size but this will increase
message size.

The mechanism and example that we have presented in this paper consider a simple
case with a number of limitations which can be improved upon through a number of ex-
tensions, some of which we have sketched. Below we present some potential extensions
of the proposed mechanism.

Our mechanism currently only allows a requestor to (implicitly) accept or reject
policies within a transaction; if they reject the policies specified by the provider they
simply do not send relevant records to the provider. In the future we could implement a
“policy negotiation” phase, in which requestor and provider can propose and counter-
propose policies to attempt to reach an agreement. For instance, the provider could
propose an obligation which requires the requestor to provider 10 temperature readings.
The requestor could counter-propose that they only provide 5 temperature readings.
This process can continue until an agreement is reached, or either party withdraws.

We have considered the notion of obligations, which can be thought of as deferred
policies: they are actions to be taken (or not taken) after data has been received from a

5 https://blockchain.info/
6 https://bitcoin.org/en/

https://blockchain.info/
https://bitcoin.org/en/

provider for a pre-specified period of time (or possibly indefinitely). Obligations could
also be set to expire when certain conditions are satisfied (not just time-related), for
instance once an obligation has been triggered a certain number of times. We could
consider a more complex system where multiple obligations can be attached to a single
piece of data, and each obligation can be individually negotiated. Another possibility
would be to allow obligations to be assigned to the provider (and not just the requestor).
This would allow obligations such as “If I send data to you, then I am obliged to keep
you updated if that data changes.” This could either be proposed by the provider or
requestor during negotiations.

Another extension is automated record purging and clean-up. Peers want to hold
a minimal set of records (as they take up storage space), so there needs to be an op-
eration to purge records that are no longer useful. Each peer would purge its own
records periodically. Records with unfulfilled obligations will always be kept (another
incentive to fulfil obligations, as otherwise your storage space will get filled quickly).
Peers could also perform record compaction, merging equivalent records (for example,
〈010200, 20〉 and 〈010200, 30〉 become 〈010200, 50〉).

Our implementation currently only addresses one peer, but we have already started
looking into ways of simulating realistic P2P networks, using a technology such as
PeerSim7, which allows hundreds of thousands of peers to be simulated efficiently.

Our policy language is a starting point, and we have many possible extensions we
would like to explore to provide finer-grained control but with adequate computational
(performance) features. We have considered extensions that allow policies to have a
time component. We also plan to provide reasoning mechanisms that allow users to see
what the consequences of accessing a given piece of data are. As part of this we would
also need to introduce more complex reasoning into the mechanism, allowing it to deal
with complex interactions between policies. The mechanism could also be extended to
allow policies to target groups of users; the present formalisation considers each peer
to be an independent agent. Extensions of the reasoning mechanism could also allow us
to provide tools for peers lacking technical knowledge to construct policies to suit their
needs.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer networks
54(15), 2787–2805 (2010)

2. Buford, J., Yu, H., Lua, E.K.: P2P networking and applications. Morgan Kaufmann (2009)
3. Caragliu, A., Bo, C., Nijkamp, P.: Smart cities in europe. Journal of Urban Technology 18(2),

6582 (2011)
4. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we

need them? IEEE Intelligent systems (1), 20–26 (1999)
5. Cheng, Y., Park, J., Sandhu, R.: A user-to-user relationship-based access control model for

online social networks. In: Data and applications security and privacy XXVI, pp. 8–24.
Springer (2012)

7 http://peersim.sourceforge.net/

http://peersim.sourceforge.net/

6. Curé, O., Naacke, H., Randriamalala, T., Amann, B.: Litemat: a scalable, cost-efficient infer-
ence encoding scheme for large rdf graphs. In: Big Data (Big Data), 2015 IEEE International
Conference on. pp. 1823–1830. IEEE (2015)

7. Dhankhar, V., Kaushik, S., Wijesekera, D.: Securing Workflows with XACML, RDF and
BPEL. In: Proceedings of the 22Nd Annual IFIP WG 11.3 Working Conference on Data
and Applications Security. pp. 330–345. Springer-Verlag, Berlin, Heidelberg (2008), http:
//dx.doi.org/10.1007/978-3-540-70567-3_25

8. Douceur, J.R.: The sybil attack. In: Peer-to-peer Systems, pp. 251–260. Springer (2002)
9. Gentry, C.: Computing arbitrary functions of encrypted data. Communications of the ACM

53(3), 97–105 (2010)
10. Grigorik, I.: Minimum viable block chain. ”https://www.igvita.com/2014/05/

05/minimum-viable-block-chain/” (Accessed On: 2014)
11. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): A vision, archi-

tectural elements, and future directions. Future Generation Computer Systems 29(7), 1645–
1660 (2013)

12. Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy pro-
tection goals. In: Privacy and Identity Management for Life, pp. 14–31. Springer (2011)

13. Harrison, J.: Theorem proving with the real numbers (1996)
14. Karjoth, G., Schunter, M., Waidner, M.: Platform for enterprise privacy practices: Privacy-

enabled management of customer data. In: Privacy Enhancing Technologies. pp. 69–84.
Springer (2002)

15. Kiss, J.: An online magna carta: Berners-Lee calls for bill of rights for web. The Guardian
12 (2014)

16. Landwehr, C.: Privacy research directions. Communications of the ACM 59(2), 29–31
(2016)

17. Lee, B.T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web by Its Inventor. Harper San Francisco (1999)

18. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. www.cryptovest.co.uk
(2008)

19. Padget, J., Vasconcelos, W.W.: Policy-carrying data: A step towards transparent data sharing.
Procedia Computer Science 52, 59–66 (2015)

20. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: Processing queries on
an encrypted database. Communications of the ACM 55(9), 103–111 (2012)

21. Postscapes: Blockchains and the internet of things. http://postscapes.com/
blockchains-and-the-internet-of-things (Accessed: March, 2016)

22. Sackmann, S., Kahmer, M.: ExPDT: A policy-based approach for automating compliance.
Wirtschaftsinformatik 50(5), 366 (2008)

23. Saroiu, S., Wolman, A., Agarwal, S.: Policy-carrying data: A privacy abstraction for attach-
ing terms of service to mobile data. In: Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications. pp. 129–134. ACM (2015)

24. Wang, X., Yong, Q., Dai, Y., Ren, J., Hang, Z.: Protecting Outsourced Data Privacy with
Lifelong Policy Carrying. In: 10th IEEE International Conference on High Performance
Computing and Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China, November 13-15, 2013. pp.
896–905 (2013), http://dx.doi.org/10.1109/HPCC.and.EUC.2013.128

25. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies,
and applications. ACM Transactions on Intelligent Systems and Technology (2014), http:
//dl.acm.org/citation.cfm?id=2629592

http://dx.doi.org/10.1007/978-3-540-70567-3_25
http://dx.doi.org/10.1007/978-3-540-70567-3_25
https://www.igvita.com/2014/05/05/minimum-viable-block-chain/
https://www.igvita.com/2014/05/05/minimum-viable-block-chain/
www.cryptovest.co.uk
http://postscapes.com/blockchains-and-the-internet-of-things
http://postscapes.com/blockchains-and-the-internet-of-things
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.128
http://dl.acm.org/citation.cfm?id=2629592
http://dl.acm.org/citation.cfm?id=2629592

Modelling patient-centric Healthcare using
Socially Intelligent Systems: the AVICENA

experience

Ignasi Gómez-Sebastià1, Frank Dignum2, Javier Vázquez-Salceda1, and Ulises
Cortés1

1 Department of Computer Science. Universitat Politècnica de Catalunya
(BarcelonaTech), Spain

igomez,jvazquez,ia@cs.upc.edu
2 Department of Information and Computing Science, Universiteit Utrecht,

Netherlands
F.P.M.Dignum@uu.nl

Abstract. One of the effects of population aging is the increase in the
proportion of long-term chronic diseases, which require new therapeutical
models that mostly take place at the patients’ home rather than inside a
health care institution. This requires that patients autonomously follow
their prescribed treatment, which can be especially difficult for patients
suffering some kind of cognitive impairment. Information technologies
show potential for supporting medication adherence but the main chal-
lenge is the distributed and highly regulated nature of this scenario,
where there are several tasks involving the coordinated action of a range
of actors. In this paper we propose to use socially intelligent systems
to tackle this challenge. These systems exhibit, understand, and reason
about social behaviour, in order to support people in their daily lives.
Such systems present an opportunity when applied to information tech-
nologies for supporting treatment adherence. We explore how concepts of
socially intelligent systems, including social practices and social identi-
ties, can be applied to AVICENA, a ongoing project to create a platform
for assisting patients in several daily tasks related to their healthcare.
We first introduce AVICENA, briefly describe our previous attempts to
model the system from an organizational perspective and an institutional
one and discuss some of the limitations found in those models. Then the
core concepts of socially intelligent systems are introduced and we show
how they can be applied to create a socially aware framework for sup-
porting medication adherence.

Keywords: Multi Agent Systems, Social Intelligence, Assisted Living

1 Introduction

One of the main challenges that national healthcare programs will face in the
near future is population ageing (i.e., the increase of the proportion of old people

2 Ignasi Gómez-Sebastià et al.

within the total population). In the European Union the size of the population
aged between 65 and 80+ years at this moment is 80 million, but studies indicate
that this number may double by 2050 [28]. In the United States of America the
group of older people (aged 60+ years) is estimated to grow from the current
11% to a 22% by 2050 [24]. Moreover this is not just a problem in developed
countries, as population ageing is also present in developing countries and might
have an even bigger impact in those countries.

One of the impacts of population ageing is the epidemiological shift in dis-
ease burden, from acute (short-term, episodic) to chronic (long-term) diseases.
From the patients’ perspective, chronic diseases imply lenghty treatments of-
ten involving the combination of various medications to be taken at different
times. It is undeniable that many patients experience difficulties in following
treatment recommendations, and poor adherence to these long-term therapies
compromises their effectiveness and may even become a cause of death. Adher-
ence to long-term therapy for chronic illnesses in developed nations averages
50%. In developing countries, the rates are even lower [31]. Adherence rates are
typically higher in patients with acute conditions, as compared to those with
chronic conditions, with adherence dropping most dramatically after the first
six months of therapy and in prophylaxis [22]. There are many reasons why
patients do not follow their therapy as prescribed. One of the reasons is that
they cannot tolerate the (long-term) side effects such as loss of hair or constant
feeling of tiredness. It may also be that the high cost of some medicines pro-
hibits acquisition of their medication. Where a condition is asymptomatic (such
as hypertension), the patient may be lulled into thinking that their treatment
has worked and that they no longer require to take their medication or follow
their diet; distracted by the hectic pace of everyday life, perhaps they simply
forget to take their pills.

From the national healthcare programs’ perspective, the epidemiological in-
crease of chronic diseases implies the need of a major shift of the programs, from
the current one centered on rapid response to episodic, acute ilnesses where
most of therapies and treatments are managed and delivered inside the official
institutional care setting, into one where most of the medical therapies for man-
aging chronic diseases (e.g., hypertension, diabetes, depression, Parkinson, etc.)
are performed away from the institutional care setting, typically at home. This
distributed approach to daily care requires patients, especially elderly, to be ca-
pable and committed to autonomously taking various medications at different
time intervals over extended periods of time. This can easily lead to forgetfulness
or confusion when following the prescribed treatment, especially when the pa-
tient is suffering multiple pathologies that require a treatment with a cocktail of
drugs. This gets worse when elderly suffer a cognitive impairment. Both concor-
dance and adherence management are of high priority, having a significant effect
on the cost effectiveness of therapy. This is especially important where there are
disorders with high healthcare costs, such as oncological diseases, psychiatric dis-
orders, HIV, geriatric disorders or dementia. Initiatives attempting to address
medicine non-adherence promote patient involvement in treatment decisions but

Modelling patient-centric Healthcare using Socially Intelligent Systems 3

remain ineffective with older patients or with patients with cognitive disorders.
Interventions using applied high-technology show potential for supporting med-
ication adherence in patients with diseases that require poly-pharmacological
treatment, as they could help to reach optimal cooperation between patients
and the healthcare professionals.

In this context, Assitive Technologies (AT) have been able to provide success-
ful solutions on the support of daily healthcare for elderly people, mainly focused
on the interaction between the patient and the electronic devices. However, the
distributed approach that such kind of healthcare has to follow in the current
socio-economical setting requires more complex AT designs that go further than
the interaction with a tool and are able to focus on the relationship between the
patient and his social environment: caretakers, relatives, health professionals. In
this paper we describe how AVICENA, a patient-centric AT system to support
patients in their daily healthcare, may be enhanced into a socially aware system
that promotes treatment adherence by keeping track of the patient’s motivations.
Next section describes AVICENA. Then in §3 we introduce the core concepts of
socially intelligent systems that we will use for our solution. §4 shows how these
concepts are used to convert AVICENA into a socially-aware system to support
medication adherence. In §5 we discuss some related work and we end with some
final conclusions and future work.

2 AVICENA

AVICENA is an ongoing project that proposes the development of an innovative
m-Health [17] platform and well-tailored personalized services to substantially
improve chronic patients’ medication and treatment adherence. AVICENA offers
the opportunity to solve the patient’s non-adherence to treatments by encourag-
ing self-management of the treatment and promoting the continuity of therapeu-
tic regimen, reducing costs to the patient, the caregivers and the health system.
AVICENA focuses on developing innovative control mechanisms for collabora-
tive, adaptive, dynamic and user centred medical concordance assessment and
management systems at preferred environments and highly cooperative, intuitive
patient/machine/pharmacist/doctor interfaces over a network. The AVICENA
platform (depicted in figure 1) includes:

– a Smart pill dispenser that provides the medication at the prescribed
times. It controls missed doses via integrated sensors, controls the drug stock
and contains a reasoning engine offering Smart services,

– AVICENA mobile app, empowering users with the ability to self manage
their treatment, obtaining tailored information and feedback depending on
their medical treatment adherence,

– a new care model involving all the stakeholders in the chronic treatment
process and in the assessment and management of the treatment adherence,

– AVICENA social network connects all the stakeholders in the care pro-
cess (i. e., patients, clinicians, caregivers and pharmacists).

4 Ignasi Gómez-Sebastià et al.

Fig. 1. AVICENA Architecture

The main goal of AVICENA is to improve individuals’ adherence to medical
treatments. A major application of the system will be the assistance of elderly
individuals with chronic systemic diseases for which complex drug therapies are
prescribed. In fact, several factors may affect adherence to medical treatments of
this individuals, among which memory failures and psychological frailty play a
relevant role. Indeed, cognitive disorders and psychopathological alterations such
as mood fluctuations, anxiety and reduced efficiency of control mechanisms, are
relatively frequent in this clinical population. AVICENA should directly influ-
ence the caregiver-patient efficiency to follow medical prescriptions by improving
both the communication with the other agents of drug therapy assistance (e.g.,
physician, pharmacist) and the capacity of the caregiver-patient system to rec-
ognize and cope with factors likely related to reduced compliance.

In previous work [14] we presented an early version of AVICENA’s model
based on the ALIVE [3] framework. In that first stage of the work we focused
on the organizational model, and the ALIVE framework eased the design of the
social network built around the patient (i. e., patient, doctor, health insurance
company, pharmaceutic, delivery person, domotic house, intelligent medical dis-
penser and medical monitor) through a rich organisational, role-based model
based on OperA [10]. All scenarios roles were clearly defined, including their
responsibilities and dependencies. But the normative model was still a simple
one, and it was properly extended in [13]. Figure 2 shows some sample norms.
The expected behavioural patterns to be abided by the actors in the scenario

Modelling patient-centric Healthcare using Socially Intelligent Systems 5

Fig. 2. Example of norms in AVICENA (source: [13]).

(including both human actors and computational agents) were properly con-
nected to both constitutive and regulative norms, and an institutional monitor
was set up to be able to infer the institutional state of an AVICENA setup. As
a result we had a rich model which described the system from both a functional,
organizationally-oriented perspective, an an institutional perspective. Expected
behaviour for al actors was clearly stated, and for those cases of non-compliance,
violation-handling norms were added. But the patient being obliged to follow
her treatment does not lead to its compliance, and there is no effective sanction
mechanism that can be placed in the scenario that can handle forgetful patients
or unmotivated ones. Furthermore in the case of informal caregivers, there is no
contract establishing their precise roles and responsibilities, and very often they
play a key role in the daily treatment process, exceeding their responsabilities
as relatives by partially or completely taking a caregiver role. Modelling these
informal interactions is the main motivation of the rest of this paper.

3 Socially Intelligent Systems

The goal of the actors in the AVICENA scenario is for the patient to follow
the treatment as accurately as possible while maintaining as much autonomy
as possible. The second part of the goal is more interesting, because it leads
to important social requirements. If the patient should be as autonomous as
possible then her course of action should be driven mainly by internal motivations
and not by contracts, obligations and prohibitions. Ideally we would like the
patient to have an internal motivation and capabilities to follow the necessary
treatment with the support of caregivers whenever needed. In order to get to
this situation we need models that go beyond the functional goals of following
the treatment and that also take into account social aspects of the actors. In
particular we need the motives (achievement, affiliation, power and avoidance),
values (leading to preferences for types of situations), social relations (power,
trust, status, responsibility, etc.), social identity (image that one wants to give,
leading to coherent behavior around values and practices, norms and roles) and
social practices (indicating standard packages of social and functional behavior

6 Ignasi Gómez-Sebastià et al.

combinations and interpretations of interactions that lead to both functional as
well as social goals). We will motivate the use of all these aspects in the scenario
and discuss some of their background and use in the scenario.

3.1 motives

As we already indicated above the goal of AVICENA is not just that the patient
gets her treatment, which could be achieved by having a person or system take
care of reminding the patient or even forcing the patient to follow the treatment.
However, the autonomy of the patient requires the careful consideration of social
aspects that surround the treatment. In [9] we argued that agents can only
become truly social when we take into consideration all basic types of motives as
defined by McLelland [21]. Besides the achievement motive, which can be thought
to drive the traditional functional goals achievement (i.e. trying to achieve a
state of the world) he distinguished the affiliation, power and avoidance motives.
The affiliation motive underlies the need of people for (positive) social contact.
This motive can be used (or abused) when a patient is not very mobile and is
dependent on other people to come by for most social contacts. In that case
a professional caregiver or family member that comes by to ensure that the
patient follows the treatment (takes a pill or performs an exercise) also can
fulfill the affiliation need of the patient as long as the person shows enough
personal interest in the patient. The power motive is NOT about gaining social
power over other people. It is actually meant to designate the drive people have
to master capabilities and thus processes. E.g. sportsmen practicing skills and
enjoying doing so comes from this motive. This motive can lead to the will
to autonomously perform some actions related to a treatment. E.g. performing
exercises that need physical or mental skills. The avoidance motive drives people
to avoid unwanted situations. This plays a role in treatments when medicines
might have negative side-effects or it is unknown how they will affect a patient.
This uncertainty might lead a patient to avoid taking the medicines.

3.2 social identity

The second important aspect that needs to be taken into account is the social
identity of a person. In short, the social identity of a person determines what
other people expect from someone in certain contexts. The social identity consists
of three elements: the perceived physical appearance, the identification with a
stereotype and membership of social groups. The first element relates to what a
person believes are his capabilities and thus what he believes other people expect
him to do. I.e. if you are old you don’t have to stand up for other people in public
transport. If you consider yourself athletic you will take initiative when physical
tasks have to be done for a group. If you consider yourself to be handicapped or
ill (e.g. with heart failure) you might avoid going up stairs or taking a walk. The
second element of a social identity indicates an ideal image (or prototype) that
one strives to mirror. Thus one compares himself with the expected behavior
of the ideal identity and also uses the expected behavior to guide one’ s own

Modelling patient-centric Healthcare using Socially Intelligent Systems 7

behavior. Thus if one believes that an ideal husband takes care of all broken
appliances in the family home then the man will try to fix all of them or try to
learn how to do this. He will consider himself bad if he fails in such tasks (even if
they are not realistic). So, if a patient sees himself as a basically healthy person
and healthy persons do not need assistance with any daily activity, the patient
might refuse the support (even though he “knows” that he needs the support
for the activity). This second element can be modeled with two parts; the first
is the set of values that a person attaches to the ideal and that he therefore
tries to uphold and the second is a set of social practices that he considers to
be appropriate given this ideal. The social practices come again with their own
set of norms and default behaviors and roles. We will discuss the social practices
later in more detail. The third element of the social identity of a person is his
group membership. If a person is part of a social group he will adopt the social
practices of this group and uphold its values. In how far he does this depends on
his role in this group. The captain of a basketball team is more likely to follow
the social practices of the team than a substitute. Membership and status of a
group can in themselves also be goals of a person. Thus being a good family
member can entice a patient to accept advice of another family member.

3.3 social practices

The final aspect of social agents that we will include in our models is that of
social practices. In our every-day life most of our behavior is governed by social
practices. They are a kind of standardized way in which we conduct all kinds
of interactions. They combine standard physical behaviors with standard social
interpretations of this behavior. E.g. greeting a person in The Netherlands at
work with a handshake shows respect and an understanding that the meeting is
formal. Someone that you see every day or who you consider to be a peer/friend
you will greet by just saying ”Hi”. Thus there is both a standard physical action
as well as standard social meaning attached to a social practice. The fact that
these are combined makes them convenient in a complex world as it avoids to
have to reason about both physical and social aspects separately. The reason that
they work is exactly because they are standard. Thus their usefulness derives
from their use rather than some intrinsic value of the actions themselves. The
existing theory on social practices is rather sparse (but see [29,25] for some
background) and not geared towards the use of them in operational contexts.
However we use this social science theory as starting point. They have proposed a
representation of social practices based on three broad categories [16]: materials,
meanings and competences.

– Material: covers all physical aspects of the performance of a practice, includ-
ing the human body (relates to physical aspects of a situation).

– Meaning: refers to the issues which are considered to be relevant with respect
to that material, i.e. understandings, beliefs and emotions (relates to social
aspects of a situation)

– Competence: refers to skills and knowledge which are required to perform
the practice (relates to the notion of deliberation about a situation).

8 Ignasi Gómez-Sebastià et al.

Based on these ideas, we developed a model to represent social practices that can
be used in social deliberation by intelligent systems. Obviously, as is the case
with e.g. the representation and use of norms, other representations of social
practices are possible given the many dimensions of the use of social practices.
Our proposal, depicted in Figure 3, is especially suitable for use in agent reason-
ing. The components of this representation model are as follows:

Concrete Social Practice Family visit of youngest daughter

Physical Context

Resources medicines, AVICENA tools,

Places Geometric position of all objects

Actors Jordi, Barbara

Social Context

Social interpretation

Roles

Patient in bad health, care giver trusted, family loved

Patient, father, care giver, daughter

Norms Patient should comply to treatment
Care giver must support patient and
respect autonomy of patient
Family should support patient
Doctor is obliged to try to keep patient alive

Activities Take medicine, give advice, comfort patient,…

Plan patterns Comfort patient before give medicine
Give advice before leaving

Meaning Preserve or regain health

Competences • Domain knowledge and skills: know medicines
• Coordination skills : know when to consult

Choice/deliberation skills:
• When health bad consult doctor
• When patient refuses medicine start enquiring why
• When doctor advices care giver needs to be able to

explain advice
• …

Fig. 3. social practices

– Physical Context describes elements from the physical environment that can
be sensed:
• Resources are objects that play a role in the practice such as medicines,

wheel chair, water, table and bed in the scenario.
• Places indicates where all objects and actors are located relatively to

each other, in space or time.
• Actors are all people and autonomous systems involved, that have capa-

bility to reason and (inter)act.

Modelling patient-centric Healthcare using Socially Intelligent Systems 9

– Social Context contains:
• Social Interpretation determines the social context in which the practice

is used.
• Roles describe the competencies and expectations about a certain type

of actors.
• Norms describe the rules of (expected) behaviour within the practice.

– Activities indicate the normal activities that are expected within the prac-
tice. Not all activities need to be performed! They are meant as potential
courses of action.

– Plan Patterns describe usual patterns of actions defined by the landmarks
that are expected to occur.

– Meaning refers to the social meaning of the activities that are (or can be)
performed in the practice. Thus they indicate social effects of actions

– Competences indicate the type of capabilities the agent should have to per-
form the activities within this practice.

Looking at the characteristics of social practices as given in Figure 3 one can
notice some resemblance to the aspects that also play a role in agent organiza-
tion models (see e.g. [10]). This list can be seen as an analogue of the connection
between imposed and emerging norms. Both organizations and social practices
give a kind of structure to the interactions between agents. However, organiza-
tions provide an imposed (top-down) structure, while the social practices form a
structure that arises from the bottom up. Thus where organizational interaction
patterns indicate minimal patterns that agents should comply with, the patterns
in a social practice indicate minimal patterns that can and are usually used by
the agents.

3.4 social intelligent systems

As we argued above socially intelligent agents should use motives, social identity
and social practices. Although we will not develop a complete agent architecture
for socially intelligent agents we sketched some preliminary ideas in [11] where we
combine the different aspects. What is important to mention here is that social
practices provide a number of triggers that can be checked in the environment
such as the time of day, the location, people and available objects. Those physical
elements determine whether a social practice is relevant. If so, it can be started
and used as a template context in which the agent finds the possible actions,
roles, norms and expectations to follow. If any of the parts is not filled in or
gives rise to choices the agent will get into its deliberation cycle in order to fill
in the choices.

The social identity of an agent plays a major role in two ways. The different
parts of the social identity of an agent all correspond to a set of social practices
that are normally shared within a group or are seen as ideal behavior according
to a stereotype identity. Thus when a person is in a context where a social
identity part is prominent (e.g. family membership when being at home with all
family) he will check the social practices pertaining to this social identity.

10 Ignasi Gómez-Sebastià et al.

The second way the social identity plays a role is that when a person identifies
a certain social practice to be relevant he will choose his own role in that practice
depending on what he expects his social identity will dictate. Thus a family
member of the patient with no meical expertise might prefer to play the family
role in the practice rather than the care giver role, because he is not sure whether
he will have all competences that would be needed for that role.

Where social practices tie into the reactive side of the agent, being triggered
by some elements of the environment, the motives can drive the agent to seek
out particular situations that would possibly fulfill that motive. Thus if the need
of affiliation is high the agent can try to connect to his friends or family and this
move might then lead him to a situation in which he can apply a social practice.
In our scenario this can be seen when a family member goes visit a patient
and when arriving at the patient noticing that he needs to take his medicine.
Whether the family member then takes up the role of care giver or as family
member depends on the experiences in this situation. If the patient gets very
irritated and does not take the medicine when adviced, the family member might
try more subtle ways to attract the attention of the patient to the medicine and
act more as family than care giver.

4 SAwICENA

To motivate how concepts of socially intelligent systems can be applied to AVI-
CENAwe introduce a representative scenario. Jordi is a 75 year old widower from
Barcelona who has three children. The younger one (Barbara) lives in Barcelona,
the middle one (Ana) in Amsterdam and the older one (Patricia) in Paris. Jordi
is enrolled in the AV ICENA platform, so he has an electronic pill dispenser
for supporting his treatment adherence. Jordi’s daughters are responsible for
re-filling the pill dispenser when new medication doses are required and taking
the patient to the doctor for regular health checks and treatment updates. Jordi
spends time with his three daughters visiting them for fourth months each in
their respective cities BCN , AMS and PAR where he has a doctor assigned.
The patient travels with an electronic health record so the different doctors can
update it, keeping track of his state. E-prescription systems are available in
BCN and AMS but not in PAR. Therefore legal situations must be considered
to allow a smooth transition between the health-care system of the different
cities, accounting both legal and technological issues.

The above scenario requires a complex institutional or organizational imple-
mentation. This can be modelled in AVICENA, but we only refer to this in as
far as it pertains to the social aspects of the scenario. First of all, it is clear that
Jordi wants to be with all his daughters regularly. Thus his affiliation motive
seems to be an important driver for his behaviour.
The daughters have two social identities (related to the scenario), they are both
daughters and care givers. With respect to the first identity there is a strong
norm that one has to respect and obey one’s parents. As a parent, Jordi does
not want to be dependent on his children, because as a parent one has to pro-

Modelling patient-centric Healthcare using Socially Intelligent Systems 11

vide for one’s children, take care of them, etc. However, the social identity of the
daughters as being a care giver does give them the responsibility to take care of
their father’s health. This might lead to a situation where they have to give him
orders with respect to taking his medication. Thus we see a tension between the
two identities.
The tension can be resolved in an organisational way by appointing professional
care givers only for the care giver role. However, this is not very cost efficient
and even sometimes impossible due to the fact that Jordi moves around every
four months.

We use the social practices to analyse the whole scenario. The routine Jordi
has to visit each of his daughters in turn every four months can be seen as a social
practice. This social practice stretches over the different locations in Barcelona,
Paris and Amsterdam. and the actors involved are Jordi and his daughters. The
social interpretation of the social practice is that the father loves his daughters
and shows his devotion by visiting them in turn for equal length. The daughters
show their love for their father by hosting him for those four months. Thus the
social meaning of the practice is to express the status of each in the family that
is spread out over Europe. The roles are the father and the daughter role. The
norms are that the father will provide for himself as much as possible, that the
daughters involve their father in their family life, that the father commits to
follow the round robin visits. The activities can be given as very general visiting
and interacting of Jordi with his daughters. The plan pattern is just the round
robin nature of the visits. The meaning of the whole social practice is to show the
family ties and strengthen them. The competences expected are minimal. Jordi
should have some financial means to travel and maybe contribute to the staying
costs. The daughters should have the competence to cope with their father.

The next step is to tie all these elements into the scenario where the daughters
are somehow co-responsible for the treatment of their father and check whether
he takes his medicines.
We have established that the father has an intrinsic motive to visit his daughters.
The social practice establishes a practical way of realizing this. If we want the
AVICENA system to support the family such that Jordi will take his medicines
at the right time it should connect with this social practice. A simple way to force
this is to connect the medicine dispenser to the electronic patient file. While the
medicines are dispensed in the correct dose on the right days and times nothing
is reported in the electronic patient file. However, whenever there is a deviation
this can be marked in the file. If the electronic patient file has several of these
marks it might signal this fact and forbid the patient to travel due to health risks.
Thus this event will disrupt the social practice. Indirect followig the treatment
correctly now becomes tied to showing his love to his daughters and is motivated
by his affiliation motive. Thus Jordi gets an internal motivation that is in line
with his behaviour and makes him aware of the medicines not only from a health
perspective, but also from a family perspective.

The above shows already the use of the social aspects in designing the support
system. We could also go one step further and include the social aspects in the

12 Ignasi Gómez-Sebastià et al.

agents that are part of the AVICENAplatform. Given that these agents would
have an understanding of their role and the role of all the humans in this scenario
they can support the patient by aligning their actions with the social practices
of the patient. In the above we used the very large social practice of visiting
the daughters for a few months. However, their are also daily practices that
can be used to combine with dispensing medicines. E.g. with dinner or when
the daughter checks in with her father. In that way the visit of the daughter
every day becomes combined with taking medicines. This in itself will make it
easier for the daughter to remind her father to take the medicines, because it
has become part of the visit to take the medicines.

We have given some very preliminary sketches to show the added value of
incorporating social aspects in these complex socio-technical systems, but it
already indicates its potential at different levels.

5 Related Work

Assistive Technologies (AT) can be effectively used for guiding elderly with their
prescribed treatments, avoiding major problems such as non-compliance with
the treatment and adverse drug reaction. There exists a range of different tech-
nological approaches, from the use of smart devices by patients (such as smart
pill dispensers [12]) to Ambient Intelligence [1] [26] (AmI) environments sup-
porting independent living. The specific area of health monitoring devices is
currently characterised by application-specific and hardware-specific solutions
that are mutually non-interoperable and are made up of diverse architectures
[30]. Furthermore, systems mainly focused on activity monitoring and reminders
tend to be rejected by end users, who may end up feeling that the system be-
comes too intrusive on their privacy [23]. Research on smart home environments
and Ambient Assisted Living is moving towards a more holistic view, trying to
create not only patient-centric AmI solutions, but also connecting the patient
with other relevant actors in their medical treatments or event connecting pa-
tients to avoid isolation and depressive attitudes. In the rest of the section we will
focus on some agent-oriented AmI solutions that are close to the work presented
in the paper.

The GerAmi project [8] creates a networked AmI solution where agents are
used to enhance communication and work scheduling, effectively making profe-
sional caregivers’ working hours more productive. Based in the THOMAS or-
ganizational architecture [4], roles, organizational units and norms have been
modelled. However, none of the articles explaining the THOMAS architecture
analysed so far includes a clear example of such organizational definition, or how
norms are operationalised. Furthermore, social concepts such as social identity,
social realtions, values or social practices are not present in the framework.

COMMODITY12 [18] focuses on providing advice, recommendations and
alerts to diabetic patients based on their data, and at the same time assist
medical personnel, who is in charge of these patients, facilitating informed and
timely decisions. The system consists in two main components: first, a set of

Modelling patient-centric Healthcare using Socially Intelligent Systems 13

devices that collect health-related data (e. g., activity and body signals). Second,
a set of personal agents with expert biomedical knowledge that interpret the data
via a reasoning process to generate a high level representation of patient’s health
status. These interpreations are then provided to relevant actors in the scenario
(e. g., patients and health care professionals) in the form of feedback reports.
The main idea is integrating sensors, intelligent agents, knowledge bases and
users within a single system. The work introduces the LAMA architecture for
developing software agents that can reason about a medical domain. Agents are
deployed using the GOLEM agent platform [5]. Unlike other approaches analysed
(e. g., GerAmi and AVICENA) COMMODITY12 does not explicitly define
the social structure where agents and devices operate. In COMMODITY12

norms are reflected implicitly in the behaviours of the agents. Furthermore, the
representation of the social context in COMMODITY12 is not explicit but
recent research[19,20] demonstrates it can be acquired through lifestyle activity
recognition of patient’s interaction with the system.

In [2] a system for automated real-time monitoring of medical protocols
is proposed. The system consists on two main components. First, a domain-
independent language for protocol specification, accompanied by a user-friendly
specification tool that that allows health care experts to model a medical pro-
tocol and translate into the systems protocol specification language. Second, a
semi-autonomous system that understands the protocols and supervises their
application. Medical services are modelled as agents, and a medical protocol is
interpreted as a negotiation process between agents. The system is able to ob-
serve the negotiation, effectively warning about forbidden actions and decisions.
The system is applied to health care environments where every staff person
plays one or more roles. A role specifies a particular service (e. g., infirmary,
surgery, etc.) and a medical protocol specifies possible interactions between the
different services in front of a particular pathology. The protocol can suggest
or forbid medical decisions depending on the medical history and evolution of
the patient. Agent interactions are performed as message exchanges through
a communication layer. Supervisor agents track such interactions and validate
them. Suggested actions correspond to medical guidelines and forbidden actions
to medical protocols. However, the social model is too protocol-driven, and there
are no way to model important issues such as, e.g., the patients’ motives.

Robot ecologies [27] are a growing paradigm in agent-based AmI in which
several robotic systems are integrated into a smart environment. Such systems
hold great promises for elderly assistance. Robocare [6] is a project deployed on
a domestic test-bed environment that combines a tracking component for people
and robots and a task execution-supervision-monitoring component. The system
is composed of several software and hardware agents, each providing a set of ser-
vices, and an event manager that processes requests to the different services
and directs them to the appropriate agents. The system also includes a moni-
toring agent, with knowledge of the assisted person’s usual schedule. However,
agent coordination and monitoring are heavy computational processes, limiting
the tested scenarios to only 2-3 persons and only a small portion of the do-

14 Ignasi Gómez-Sebastià et al.

mestic environment. the ILSA (Independent LifeStyle Assistant) project [15],
that passively monitors the behaviours of the inhabitants of the residential lab-
oratory, alerting relatives in case of potentially dangerous situations (e.g., the
user falls). ILSA presents two main innovations with regards to the Robocare
project: 1) Agents autonomously interact within them in order to achieve their
goals, without the need of an event manager agent that coordinates them (but
a centgralized coordination agent is used to transform context-free perceptions
provided by the agents into context-aware perceptions); and 2) Agents are able
to learn schedules based on the daily tasks performed by the inhabitants. How-
ever, once a schedule has been learned, the user is not able to deviate from it
without raising an alarm. Focus in both systems is on activity monitoring and
the coordination between the human and the artificial devices, and thus other
social aspects such as the patients’ relationship with caregivers are not part of
the model.

An interestingly rich model is the the AOE2 framework presented in [7].
AOE2 integrates (in a model that is both general and coherent) the main con-
cepts to be considered in order to build an agent-based simulator for the partic-
ular domain of health care. It is able to reproduce the behaviour of the social
system by presenting the decision making entities of the studied system as agents.
The main idea behind the AOE2 framework is focusing in high level conceptual
issues regarding health care model development process, while offering a guide-
line for carrying out this process independently of technical choices. The idea
of applying a framework to agent-based simulations in the healthcare domain is
appealing. The complexity and dynamics of the domain (e. g., the high degree
of uncertainty inherent to clinical processes, the involvement of multiple dis-
tributed service providers and decision makers, etc.) make it useful for applying
agent-based simulations. Furthermore, the approach is also valid for providing a
tool able to asses the possible outcomes of the different actions that can be taken
in order to improve the system, making it more efficient or sustainable from an
economic point of view. However the model does not include mental models of
the individuals’ motives, values and social identities, thus being unable to tackle
the informal relations that we are trying to model in our work.

6 Conclusion and Future Work

In this paper we have shown the potential of extending the AVICENAsystem
with social intelligence. We have outlined with social aspects seem of particu-
lar importance. I.e. social motives, social identity and social practice. We have
sketched their role in the agent deliberation and have shown their use both in
the design of a socially intelligent system as well as how individual agents could
profit from these social enhancements.

Of course, this paper only gives some preliminary steps and one of the first
steps to take is to give a more formal representation of the social aspects such
that we can give a more precise and formal account of their influence on the

Modelling patient-centric Healthcare using Socially Intelligent Systems 15

agent deliberation. We hope to do some of this work while actually starting on
an implementation of the scenario in AVICENA.

A second important step is to describe the relations between all these different
aspects in an agent deliberation not just for particular scenarios but also in a
more generic way. I.e. do agents always start with social practices and then
decide on actions based on their motives or decide upon their roles in the social
practice based on their identity? Or do they start with their identity and find
social practices fitting with that identity? Or better still is their no fixed order
but is that determined by the situation?

As can be seen there are many interesting issues that should be looked into,
but this paper shows at least that they are issues worth investigating.

References

1. Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A.V.: A survey on ambient
intelligence in healthcare. Proceedings of the IEEE 101(12), 2470–2494 (2013)

2. Alsinet, T., Ansótegui, C., Béjar, R., Fernández, C., Manyà, F.: Automated mon-
itoring of medical protocols: a secure and distributed architecture. Artificial Intel-
ligence in Medicine 27(3), 367–392 (2003)

3. Álvarez-Napago, S., Cliffe, O., Padget, J.A., Vázquez-Salceda, J.: Norms, Organi-
sations and Semantic Web Services: The ALIVE approach. Workshop on Coordi-
nation, Organization, Institutions and Norms at MALLOW’09 (2009)

4. Bajo, J., Fraile, J.A., Pérez-Lancho, B., Corchado, J.M.: The THOMAS architec-
ture in home care scenarios: A case study. Expert Systems with Applications 37(5),
3986–3999 (2010)

5. Bromuri, S., Stathis, K.: Situating cognitive agents in golem. In: Engineering
environment-mediated multi-agent systems, pp. 115–134. Springer (2008)

6. Cesta, A., Oddi, A., Smith, S.F.: A Constraint-Based Method for Project
Scheduling with Time Windows. Journal of Heuristics 8, 109–136 (2002),
http://dx.doi.org/10.1023/A:1013617802515

7. Charfeddine, M., Montreuil, B.: Toward a conceptual agent-based framework for
modelling and simulation of distributed healthcare delivery systems. CIRRELT
(2008)

8. Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: Improving healthcare delivery in
geriatric residences. Intelligent Systems, IEEE 23(2), 19–25 (2008)

9. Dignum, F., Prada, R., Hofstede, G.: From autistic to social agents. In: AAMAS
2014. pp. 1161–1164 (May 2014)

10. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1, Utrecht University (2004), phD Thesis

11. Dignum, V., Dignum, F.: Contextualized planning using social practices. In: Coor-
dination, Organisations, Institutions and Norms in Agent Systems X. LNAI, vol.
9372. Springer (2015)

12. Georgia Institute of Technology: Aware Home Research ini-
tiative. Tech. rep., Georgia Institute of Technology (2012),
http://www.cc.gatech.edu/fce/ahri/projects/index.html.

13. Gómez-Sebastià, I.: NoMoDei: A framework for Norm Monitoring on Dynamic
electronic institutions. Universitat Politecnica de Catalunya (2016), phD Thesis

16 Ignasi Gómez-Sebastià et al.

14. Gómez-Sebastià, I., Garcia-Gasulla, D., Álvarez-Napagao, S., Vázquez-Salceda, J.,
Cortés, U.: Towards an implementation of a social electronic reminder for pills. VII
Workshop on Agents Applied in Health Care (2012)

15. Haigh, K.Z., Kiff, L.M., Myers, J., Guralnik, V., Geib, C.W., Phelps, J., Wagner,
T.: The Independent LifeStyle Assistant (I.L.S.A.): AI Lessons Learned. In: In
The Sixteenth Innovative Applications of Artificial Intelligence Conference (IAAI-
04. pp. 25–29 (2004)

16. Holtz, G.: Generating social practices. JASSS 17(1), 17 (2014),
http://jasss.soc.surrey.ac.uk/17/1/17.html

17. Istepanian, R., Laxminarayan, S., Pattichis, C.S.: M-health. Springer (2006)
18. Kafalı, Ö., Bromuri, S., Sindlar, M., van der Weide, T., Aguilar Pelaez, E., Schaech-

tle, U., Alves, B., Zufferey, D., Rodriguez-Villegas, E., Schumacher, M.I., et al.:
Commodity 12: A smart e-health environment for diabetes management. Journal
of Ambient Intelligence and Smart Environments 5(5), 479–502 (2013)

19. Kafalı, Ö., Romero, A.E., Stathis, K.: Activity recognition for an agent-oriented
personal health system. In: PRIMA 2014: Principles and Practice of Multi-Agent
Systems, pp. 254–269. Springer (2014)

20. Luštrek, M., Cvetkovic, B., Mirchevska, V., Kafalı, Ö., Romero, A.E., Stathis, K.:
Recognising lifestyle activities of diabetic patients with a smartphone. In: Proceed-
ings of Pervasive Health 2015 : Workshop on Personal Health Systems for Chronic
Diseases (to be puslished)

21. McClelland, D.: Human Motivation. Cambridge Univ. Press (1987)
22. National Council on Patient Information and Education.: Enhancing Prescription

Medicine Adherence: A National Action Plan. Tech. rep., National Council on
Patient Information and Education. (2007)

23. Niemelä, M., Fuentetaja, R.G., Kaasinen, E., Gallardo, J.L.: Supporting Indepen-
dent Living of the Elderly with Mobile-Centric Ambient Intelligence: User Evalu-
ation of Three Scenarios. In: AmI. pp. 91–107 (2007)

24. Population Division UN Department of Economic Social Affairs: Population ageing
and development: Ten years after Madrid. Tech. Rep. 2012/4, Population Division
UN Department of Economic Social Affairs (Dec 2012)

25. Reckwitz, A.: Toward a theory of social practices. European Journal of Social
Theory 5(2), 243–263 (2002)

26. Sadri, F.: Ambient intelligence: A survey. ACM Computing Surveys (CSUR) 43(4),
36 (2011)

27. Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., Seo, B.,
Cho, Y.J.: The PEIS-ecology project: vision and results. In: Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. pp. 2329–2335.
IEEE (2008)

28. Schäfer, G.: Europe in figures. Eurostat statistical yearbook (2008)
29. Shove, E., Pantzar, M., Watson, M.: The Dynamics of Social Practice. Sage (2012)
30. Vermesan, O., Friess, P.: Internet of Things: converging technologies for smart

environments and integrated ecosystems. River Publishers (2013)
31. World Health Organization: Adherence to long-term therapies. Evidence for action.

Tech. rep., World Health Organization (2003)

Using Petri Net Plans for Modeling UAV-UGV
Cooperative Landing

Andrea Bertolaso and Masoume M. Raeissi and Alessandro Farinelli and Riccardo Muradore 1

Abstract. Aerial and ground vehicles working in corporation are
crucial assets for several real world applications, ranging from search
and rescue to logistics. In this paper, we consider a cooperative land-
ing task problem, where an unmanned aerial vehicle (UAV) must
land on an unmanned ground vehicle (UGV) while such ground
vehicle is moving in the environment to execute its own mission.
To solve this challenging problem we consider the Petri Net Plans
(PNPs) framework, an advanced planning specification framework
that allows to design and monitor multi robot plans. Specifically, we
use the PNP framework to effectively use different controllers in dif-
ferent conditions and to monitor the evolution of the system during
mission execution so that the best controller is always used even in
face of unexpected situations. Empirical simulation results show that
our system can properly monitor the joint mission carried out by the
UAV/UGV team, hence confirming that the use of a formal planning
language significantly helps in the design of such complex scenarios.

1 Introduction

Use of cooperative unmanned air and ground vehicles has been grow-
ing rapidly over the last years, search and rescue[8], target detection
and tracking[21] and mines detection and disposal [22, 3] are a few
examples of such applications that benefit from collective behavior
of different types of unmanned robots. As in any multi robot system,
a variety of cooperative scenarios can be imagined in different appli-
cations: aerial robots assist ground robots (Aerial robots can provide
the ground robots with information related to the environment, ex.
landmark maps), ground robots assist aerial robots or ground and
aerial robots cooperate to achieve a task (for example exploration
and surveillance or target detection and tracking tasks)[15].

Surveying the relevant literature, UAV/UGV corporation has been
addressed from different perspectives. One research direction in this
area is the development of controlling schemes that provide control
laws for the different vehicles, while considering that their motion
must be coordinated. For example, Brandao and colleagues, in [2],
provide a decentralized control structure that involves an helicopter
and a team of UGVs to accomplish a 3D-trajectory tracking mission.
Similarly, the approach proposed by Owen and colleagues [17] aim
at developing a coordinated system where UAVs and UGVs must
track a dynamic target.

Another strand of research focuses on cooperative path planning
and task assignment methods for systems composed of UAVs and
UGVS. For example, Yu and colleagues [21] focus on path planning
for cooperative target tracking, while Dewan and colleagues [6] con-

1 Computer Science Department, University of Verona, Italy, email:
andrea.bertolaso@studenti.univr.it, masoume.raeissi@univr.it, alessan-
dro.farinelli@univr.it, riccardo.muradore@univr.it

sider coordinated exploration for a UAVs/UGVs team by using a task
assignment solution approach based on integer programming.

The main focus of such previous work is on acquiring and inte-
grating data gathered by each vehicles to perform tasks such as ex-
ploration, surveillance or target tracking. Here we turn our attention
to a cooperative control scenario, where the UAV/UGV team should
operate in tight cooperation to perform a joint task. In particular, here
we focus on a cooperative landing scenario, where the UAV must
land on the UGV while the UGV is moving in the environment to ex-
ecute its own mission. Our goal is for the UAV to perform a fast and
safe landing maneuver, hence we propose a strategy where the UAV
quickly approaches the UGV and then carefully plans a safe landing
trajectory. In this context, by tight coordination we mean that robots
must continuously synchronize their individual actions to success-
fully perform the joint task. This is because the joint task imposes
execution constraints to a vehicles that might depend on the state
of the other vehicle. For example, in our landing scenario, the UAV
must know the intended future locations of the UGV to properly plan
a trajectory so to smoothly land on the UGV. This tight cooperation
is in contrast with loose cooperation, where robots can execute their
individual actions in isolation but should coordinate (and communi-
cate) only at key points. For example, when exploring a region robots
should avoid overlapping too much but once they decided their area
of competence they do not need a continuous communication with
the other platforms.

Now, a crucial open issue for multi robot system that must per-
form tight cooperation is to recover from possible failures due to
unexpected events. For example, consider a situation where the UAV
is initiating the landing maneuver based on the future positions com-
municated by the UGV. If the UGV must suddenly change its current
trajectory (i.e., due to a moving obstacle) the UAV should smoothly
adapt its plan to recover from a possible failure.

In this paper we investigate the use of high level language or team
plans [20, 11, 23, 7] to describe member’s actions and to monitor the
activities of vehicles during mission execution so to achieve the col-
lective behaviors and goals even in face of such unexpected events.
Specifically, we focus on Petri Nets and related approaches which
build on PNs structure (e.g., Petri Net Plans [23] and Colored Petri
Nets [9]), which have proved to be excellent tools for modeling multi
robot systems.

In more detail, the main contribution of this paper is to investigate
the use of the Petri Net Plan (PNP) specification framework to spec-
ify the collaborative landing task. There are several benefits related
to the use of the PNP framework: first it provides a rich graphical
representation that helps the designers to create plans with minimal
effort, second the generated plans can be monitored during the exe-
cution, third PNPs support well-defined structures for handling tight

coordination and on-line synchronization in multi robot systems.
In summary, this paper makes the following contributions to the

state of the art:

• we use an advanced framework for multi agent plan specification
to design a complex cooperative behavior in multi robot systems.
Specifically, we design an effective strategy for cooperative land-
ing for our UAV/UGV system that is able to recover from un-
expected situations (i.e., sudden deviation of the UGV from the
planned trajectory). To the best of our knowledge this is the first
application of a team-oriented plan specification framework to a
complex cooperative control scenario such as cooperative landing.

• We evaluate our approach in a realistic simulation environment us-
ing state of the art tools for robot control and simulation. Specifi-
cally, we use ROS to connect and control the simulated platforms,
and V-REP to simulate the two platforms and the environment.
Our experiments show that the proposed approach can effectively
monitor the cooperative behavior of the two vehicles recovering
from possible failures. Specifically a video (reference) shows an
exemplar execution of our framework describing the different op-
erations carried out by the vehicles as well as the different states
of the monitoring framework.

The remainder of the paper is organized as follows: Section 2 de-
scribes the related work on cooperative UAV/UGV applications and
team oriented plans. Section 3 provides necessary background on the
PNP framework while Section 4 detail our cooperative control strat-
egy and the plan we designed to monitor the mission. The evaluation
and simulation setups are explained in section 5. Section 6 concludes
the paper and outline possible future research directions.

2 Related Works
In this section we will first discuss previous works on UAV/UGV
cooperation applications and then Petri Net Plans framework will be
described in more details.

2.1 UAV/UGV Cooperation
There are a wide variety of applications that take advantage of co-
operative multi vehicle team including aerial and ground vehicles.
To model and solve the cooperation tasks, several multi vehicle plat-
forms have been proposed and investigated for different applications.
Each platform is characterized by the path planning algorithm and
the task assignments method. Yu et al. model a tracking problem us-
ing UAVs/UGVs cooperation based on the probability of the target’s
current and predicted locations [21]. The path planning algorithm is
designed to generate paths for a single UAV or UGV maximizing the
sum of probability of detection over a finite look-ahead. Dewan et al.
propose an exploration strategy for coordinated unmanned ground
vehicles (UGV) and micro-air vehicles (MAV) [6]. The exploration
is modeled as an Integer Programming optimization problem.

UAV/UGV collaboration can be also exploited for mine detection
[22]. The UGV navigates to the Unexploded Ordnance (UXO) posi-
tions based on the data sent by UAV. Cantelli et al. propose an archi-
tecture to allow cooperation between a ground robot and a quadrotor
UAV [3]. The UAV can autonomously follow the ground robot, by
using an image processing algorithm: aerial images are used to plan
trajectories via a developed webGIS platform.

Phan and Liu propose a hierarchical 3-layered UAV/UGV cooper-
ative control framework for a wild fire detection scenario [19]. The
model consists of a mobile mission controller, which is the generic

mission planner (based on the defined autonomy), and two particular
vehicle platforms which can optimally run the designed plans. Com-
pared to our work, their framework does not monitor the execution
of the plan and there is no plan validation tool: both these features
are provided by the PNPs framework.

The most similar research to our work from the problem definition
perspective can be found in [5] where an autonomously coordination
for the landing between a quadrotor UAV and skid-steered UGV is
proposed. A joint decentralized controller is designed on top of local
nonlinear controllers that linearize the mathematical model of each
vehicle via feedback. Once the vehicles are spatially close enough
to each other, an automated landing procedure for the quadrotor is
activated. This procedure is based on a tracking controller for the
quadrotor altitude state.

In this paper we focus on a high level planning language for mod-
eling the cooperative behavior instead of implementing cooperative
perception techniques. We use PNPs that allow to handle external
events and interruptions of the execution of operations. This property
has great influence on keeping the team’s goal integrated in tightly
coordinated tasks.

2.2 Team plans
The problem of monitoring plan execution in multi robot systems
is a key issue when such systems must be deployed for real- world
applications, where the environment is typically dynamic and action
execution is non -deterministic. Two successful BDI-based frame-
works for plan specification are STEAM and BITE, which enable
a coherent teamwork structure for multiple agents. The key aspect
of STEAM [20] is team operators, which are based on the Joint In-
tentions Theory introduced by [4]. In STEAM, agents can monitor
the team’s performance and reorganize the team based on the cur-
rent situation. BITE, which was introduced by Kaminka & Frenkel
[12], specifies a library of social behaviors and offers different syn-
chronization protocols that can be used interchangeably and mixed
as needed. However, while both these works provide key contribu-
tions for building team oriented plans, they do not provide any spe-
cific mechanism for interrupting the execution of such plans. There
is substantial literature on the topic of using Petri Nets [18] and vari-
ants such as Colored Petri Nets [10] as the basis for representing team
plans. Similar to state machines and other directed graphs, Petri Nets
give an intuitive view of the plan, but provide additional power use-
ful for multi robot teams, such as synchronization and concurrency.
Significant work has produced Petri Net analysis tools [16] [1] which
can determine many of its behavioral properties, such as reachabil-
ity, boundedness, liveness, reversibility, coverability, and persistence.
For complex team plans, these automated methods for finding errors
before testing them on simulated or physical platforms is an impor-
tant strength. [23] proposed an approach for plan monitoring called
Petri Net Plans (PNPs). PNPs takes inspiration from action languages
and offers a rich collection of mechanisms for dealing with action
failures, concurrent actions and cooperation in a multi robot context.
One important functionality offered by the formalism of PNP is the
possibility to modify the execution of a plan at run-time using inter-
rupts.

3 Background: Petri Net Plans (PNPs)
Petri Net Plans (PNPs) is a framework for designing, representing
and executing complex multi robot behaviors. The syntax and the
semantics of PNPs is based on Petri Nets (PNs) [16]. In addition

to supporting PNs properties, it is equipped with several features.
For example, in order to provide cooperative behaviors in robotic
application, different kind of operators are defined by the framework,
such as the coordination operator and the interrupt operator. In the
following we discuss the structure of PNP language in more details
clarifying the use of the different operators and strictures in our plan.

In general a PNP is a PN〈P, T, F,M0〉 with a domain specific
interpretation and an extended semantics.

Specifically, a Petri Net is represented by a directed bipartite
graph, in which nodes could be either places or transitions, arcs con-
nect places to transitions and vice versa. Places in a Petri net contain
a discrete number of marks called tokens. A particular allocation of
tokens to places is called a marking and it defines a specific state
of the system that the Petri Net represents. In more detail, the PN
tuple is formed by a finite set of places P = p1, p2, ..., pm and a
finite set of transitions T = t1, t2, ..., tn, where P ∪ T 6= O and
P ∩ T = O. Places and transitions are connected by a set of edges
F ⊆ (P ×T)∪(T ×P)2. Finally, an initial marking M0 : P → 0, 1
specifies the initial distribution of tokens over the PNP. Notice, that
while in general Petri Nets the initial distribution of tokens consider
a positive, integer number of tokens for each place in PNP we restrict
this to zero or one token. This is because, in PNP tokens define exe-
cution threads for the robot’s actions, hence there should not be two
tokens in the same place.

In a PNP, there are four different type of places: P = P I ∪ PO ∪
PE ∪ PC , where:

• P I is the set of input places, which model initial configurations of
the PNP;

• PO is the set of output places, which model final configurations
of the PNP;

• PE is the set of execution places, which model the execution state
of actions in the PNP;

• PC is the set of connector places, which are used to connect dif-
ferent PNPs.

Also transitions are partitioned in three subsets T = TS ∪ TT ∪
TC , where:

• TS is the set of start transitions, which model the beginning of an
action/behavior;

• TT is the set of termination transitions, which model the termina-
tion of an action/behavior;

• TC is the set of control transitions, which are part of the definition
of an operator.

Two types of actions are considered in PNPs framework: ordi-
nary and sensing actions. Ordinary actions are deterministic non-
instantaneous actions. For example in figure 1(a) which is part of
our petri net model, init flyFar is an ordinary action. Since it con-
sist of a sequence of start event init flyFar.start [far], execution state
init flyFar.exec, and termination event init flyFar.end.

In contrast to the ordinary actions, sensing actions are non-
deterministic which means that the outcome of the action may be
specified at execution time.

We can build more complex operators by combining different
PNPs structure. The most important operators to build complex PNPs
are:
2 Notice that, standard Petri Nets include also a function, that associate a

weight to each edge specifying the number of tokens that are required by
the transition to fire (when the edge goes from a place to a transition) or the
number of tokens that are inserted in the place (when the edge goes from a
place to a transition). In PNP the labels are all 1 hence we do not include
the weight function here.

(a) Interrupt operation

(b) Fork operation

(c) Join operation

Figure 1. PNPs different operators has been applied in cooperative
UAV/UGV Petri Net model

Interrupt Operator Interrupt operator, is a very powerful tool for
handling action failures. In fact, it can interrupt actions upon fail-
ure events and activate recovery procedures. The plan shown in fig-
ure 1(a) shows an interrupt operator where transition flyFar.iterrupt
[close] will interrupt the execution of flyFar action when the close
condition happens in the system.

Fork operator Figure 1(b) shows an example of fork operator
which indicates that after firing the init moveClose.end transition, the
token inside place init moveClose.exec will go to both places move-
Close and sendUgvFP. Actually the fork operator in PNP framework
generates multiple threads from one thread.

Join Operator Figure 1(c) illustrate a join structure in the created
plan. This operator provides the simultaneous execution of multiple

threads or tokens.
The PNP framework has been successfully applied on sev-

eral robotic platforms and in different domains and is avail-
able at https://sites.google.com/a/dis.uniroma1.
it/petri-net-plans/

4 Problem Description: UAV/UGV Cooperative
Landing Scenario

The problem addressed in this paper is a particular kind of collabora-
tion between heterogeneous autonomous vehicles: the landing of an
UAV on an UGV. We model the execution of this task by exploiting
the power of the PNP framework discussed in Section 3. The collab-
oration task is composed of three phases:

1. both the UGV and UAV are moving according to their specific and
non-cooperative tasks;

2. the UAV approaches the UGV (flyFar action using the PNP termi-
nology);

3. the UAV lands on the UGV (flyClose action using the PNP termi-
nology).

In Phase 2 the UAV is using its sensing system (e.g. camera) to locate
the UGV and plans the faster trajectory to approach the UGV. In this
phase the UGV in not aware of the intention of the UAV and so it is
continuing its task as in Phase 1.

In Phase 3, the UAV is close to the UGV and information are ex-
changed between them: the UGV is getting aware of the intention of
the UAV and so it decreases its velocity and sends to the UAV its
planned trajectory to easier the landing. This means that the UGV
is still pursuing its objective (e.g. patrolling an area) but in a slower
way.

The key element in Phases 2 and 3 is the efficient generation of
the trajectories for the UAV. To generate the trajectory, we used the
Type II Reflexxes Motion Libraries [13, 14] which allows to force
trapezoidal velocity profiles only. This means that we can set the
maximum speeds (vmax

x , vmax
y and vmax

z along x, y and z, respec-
tively) and the maximum accelerations (amax

x , amax
y and amax

z). In
this work, we assume that only the Cartesian positions have to be
computed, i.e. x(·), y(·) and z(·), whereas the yaw angle is set in
such a way to make the UAV always pointing towards the UGV.

During Phase 2, the UAV knows its current position pUAV =
{x(t), y(t), z(t)}, velocity vUAV = {vx(t), vy(t), vz(t)}, and the
actual position of the UGV pUGV = {X(t), Y (t)}. For the UGV
the coordinate along z is not important. The UAV needs only to know
the height Z̄ of the area with respect to the ground where it is sup-
posed to land, i.e. Z(t) = Z̄, ∀t.

The following excerpt of the code explains how we used the Type
II Reflexxes Motion Libraries

ReflexxesAPI *RML = new ReflexxesAPI(NDoF,Ts);
for (int i = 0; i < NDoF; i++)
{
input_params->CurrentPositionVector->VecData[i] =

uavMotion.position[i];
input_params->CurrentVelocityVector->VecData[i] =

uavMotion.currentVelocity[i];
input_params->MaxVelocityVector->VecData[i] =

uavMotion.maxVelocity[i];
input_params->MaxAccelerationVector->VecData[i] =

uavMotion.maxAcceleration[i];
input_params->TargetPositionVector->VecData[i] =

ugvCurrentPos[i];
input_params->TargetVelocityVector->VecData[i] = 0;
input_params->SelectionVector->VecData[i] = true;
}

error_value = RML->RMLPosition(*input_params,
output_params,Flags);

The input params structure contains the information about the
current and target positions and the kinematic constraints (max speed
and acceleration), whereas output params gives the planned tra-
jectory for each degree of freedom (NDoF). In the present scenario
NDoF is equal to three. We selected the Phase-synchronization plan-
ning mode: this means that the trajectories for x, y end in the target
positions X(t), Y (t) at the same instant. During Phase 2, z is kept
constant.

In Phase 3, the UAV uses the T -seconds ahead information about
the position received by the UGV as target point, instead of the UGV
current position of the UGV as in Phase 2.

The previous code changes only in the following line

input_params->TargetPositionVector->VecData[i] =
ugvFuturePos[i];

where ugvFuturePos is provided by the UGV, whereas the time
interval T is constant, known to the UAV and sets as a trade-off be-
tween promptness and smoothness.

Unlike in Phase 2, the constraint on T implies that we have to tune
the maximal velocity (along x, y, z) in a way that the UAV will be in
X(t + T), Y (t + T), Z̄ at t + T , i.e. not later but also not before.

To guarantee such behavior, we have to solve the following prob-
lem any time the UAV receives an update from the UGV:

v̄?
UAV = arg maxv̄max

UAV
‖pUAV (t + T)− pUGV (t + T)‖

subject to v̄UAV ≤ vmax
UAV

where vmax
UAV :=

√
(vmax

x)2 + (vmax
y)2 + (vmax

z)2. It is possible
that pUGV (t + T) cannot be reached by the UAV in T seconds also
moving at the maximum speed, i.e. pUAV (t + T) 6= pUGV (t +
T). In this case the UAV can only move at maximum speed in the
right direction. Since in Phase 3 the maximum velocity of the UAV
is larger than the maximum velocity of the UGV, there would be
a moment where the minimization problem will find out a feasible
value for the speed to plan the trajectory that satisfies exactly the
final condition. The UGV will then safely land on the UGV in T
seconds accomplishing the cooperative task

As it is better explained in the next Section, it is possible that,
due to obstacles (e.g. trees, buildings) or other application-dependent
reasons, the UAV cannot land as expected.

5 Simulation and Evaluation

Figure 3 represents the team plan has been created to model the above
mentioned cooperative task. We used JARP to create this Petri Net
plan, however any of the available graphical tool that supports pnml
file format could be used. According to Figure 3, the plan consists
of a part for controlling UGV’s behavior and another part for UAV’s
behavior.

Actions name and all external conditions have been defined in the
plan. Actions represent robot behaviors, for example in our case the
flyFar action represents the UAV flying towards the UGV constantly
following its position. Conditions are external events and need to be
checked at run time. The possibility to define conditions is a powerful
feature that allows to enrich the plan behavior at run time.

The plan execution will be started by initializing the UGV and then
the UAV. Both robots will execute the moveFar and flyFar actions,
until UAV gets close to the UGV or decides to landing. The close
and far distances are application-dependent. When the UAV is close

to the UGV, the flyFar action is interrupted and UAV sends the close
event to the UGV. The UGV moveFar action is interrupted as well.
The part of the plan which is highlighted in figure 3 controls the
communication and synchronization between the two vehicles.

When the vehicles are getting close, UAV’s behavior should
change based on UGV’s future position. UAV must be informed of
UGV’s future position to coordinate their actions. Thus UAV will re-
ceive UGV’s future position periodically (T seconds). Every time a
new future position is sent to the UAV, if it is not the first, this new
position will interrupt the flyClose action so the UAV can recompute
flight trajectory in order to follow the new location of UGV. Basi-
cally the if/else block is used to decide whether we should stop the
flyFar action (which happens only once, when the first new position
is received), or the flyClose action, which may happen several time
(until the UAV gets over the UGV).

To execute and validate the developed plan, a simulation platform
running on a Linux operative system is used. The following software
tools are integrated to implement and execute the above mentioned
plan within the Robot Operating System (ROS) middleware:

• JARP: it is a graphical interface for creating the Petri net plan,
• PNP: it is a library that processes pnml file and executes the plan,
• PNPros: it is the bridge between the PNP library and ROS that

allows the execution of PNP in ROS using the actionlib module.
It can be used for implementing different actions and for defining
the firing rules for transitions,

• V-REP: it is used for the visualizing and simulation of the envi-
ronment,

• Reflexxes: it is a library that computes the UAV trajectories.

The following steps are required to set up the system using the
PNPs library and ROS. When the plan is designed with JARP, we
have to hand coding actions and conditions, and makes them avail-
able to the PNPros system which connects the PNP library with ROS.
Actions will be implemented using the ROS Action-lib interface.

For running the experiments, we create in V-REP a simulation en-
vironment containing the UAV and the UGV. The initial position of
both vehicles can be chosen arbitrarily in order to obtain different ex-
perimental setups. Communication with V-REP is possible through
ROS topics. When the simulation environment and the system that
handles the plan are launched, the initial position of UAV and UGV
is retrieved from V-REP via ROS topics. With these information the
plan can start its progress by using PNP library. PNP library commu-
nicates with PNPros to

• start new actions (a thread is launched for each action),
• check external conditions based on the environmental knowledge

that is available thanks to PNPros, and
• interrupt a running action.

The actual positions of the UAV and UGV during the simulation
are communicated to V-REP via ROS topics. The simulation envi-
ronment will be updated according to the new changes. The whole
system keeps on running until a final state in the Petri Net Plan is
reached. Figure 2(a) shows a snapshot of the simulation when the
UAV is flying toward the UGV (flyFar action during Phase 2).

A video showing the complete execution of the plan can be seen at
the link in the footnote3. The vehicles start far away from each other;
then the UAV flies toward the UGV with maximum speed (Phase 2)
until the close condition comes true (Phase 3). At this moment, UAV
sends an external event to the UGV and the UGV starts sending its

3 https://goo.gl/hiZIKP

(a) Phase1: Initializing UAV and UGV in the environment

(b) Phase2: UAV flies toward UGV

(c) Phase3: UAV and UGV gets close

Figure 2. V-REP environment setup for simulating the cooperative landing
task.

future positions to the UAV and decreases its speed to make the land-
ing easier. The future position of the UGV is important for the UAV
because unexpected events may happens (e.g. obstacles) that prevent
the UAV to land on the UGV and so they may get far away again
(from Phase 3 to Phase 2). In other words the video illustrates that
the coordination between the two vehicles is not a one-step synchro-
nization action but it is a continuous behavior. The video also shows
the evolution of the simplified version of the Petri Net plan during
the simulation in order to better illustrate the behavior of the system.
The mission is accomplished when the UAV lands on the UGV: this
corresponds to the final state (place) of the plan.

Figure 3. Petri Net Plan created by JARP editor for modeling UAV/UGV cooperative landing task. The highlighted part of the plan is specifically responsible
for synchronization between UAV and UGV

6 Conclusions and Future Work
In this paper we investigate the use of a high level language or team
plans to describe members actions and to monitor the behavior of
vehicles during mission execution in a simulated multi robot system.
In particular we considered a complex cooperative landing scenario,
where an unmanned aerial vehicle (UAV) must land on an unmanned
ground vehicle (UGV), and we used Petri Net Plans (PNPs) frame-
work to model this system. The PNPs framework provides differ-
ent structures for handling interruption and synchronization behavior
which makes modeling and monitoring of the plans easier specifi-
cally when tight coordination among team members exist. The sim-
ulation results confirm the benefit of using a high level specification
language for modeling and monitoring cooperative behavior in multi
robot systems to achieve the collective behaviors even in face of un-
expected events which can be recommended to many other similar
applications in this area.

REFERENCES
[1] Bernard Berthomieu, Didier Lime, Olivier H Roux, and François Ver-

nadat, ‘Reachability problems and abstract state spaces for time petri
nets with stopwatches’, Discrete Event Dynamic Systems, 17(2), 133–
158, (2007).

[2] A. S. Brandao, J. A. Sarapura, E. M. d. O. Caldeira, M. Sarcinelli-Filho,
and R. Carelli, ‘Decentralized control of a formation involving a minia-
ture helicopter and a team of ground robots based on artificial vision’,
in Robotics Symposium and Intelligent Robotic Meeting (LARS), 2010
Latin American, pp. 126–131, (Oct 2010).

[3] L. Cantelli, M. Mangiameli, C. D. Melita, and G. Muscato, ‘Uav/ugv
cooperation for surveying operations in humanitarian demining’, in
2013 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pp. 1–6, (Oct 2013).

[4] Philip R Cohen and Hector J Levesque, ‘Teamwork’, Special Issue in
cognitive Science and Artificial Intelligence, 487–512, (1991).

[5] J. M. Daly, Y. Ma, and S. L. Waslander, ‘Coordinated landing of a
quadrotor on a skid-steered ground vehicle in the presence of time de-
lays’, in 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4961–4966, (Sept 2011).

[6] A. Dewan, A. Mahendran, N. Soni, and K. M. Krishna, ‘Heterogeneous
ugv-mav exploration using integer programming’, in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5742–
5749, (Nov 2013).

[7] Alessandro Farinelli, Nicoló Marchi, Masoume M. Raeissi, Nathan
Brooks, and Paul Scerri, ‘A mechanism for smoothly handling human
interrupts in team oriented plans’, in Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’15, pp. 377–385, Richland, SC, (2015). International Foun-
dation for Autonomous Agents and Multiagent Systems.

[8] M. K. Habib, Y. Baudoin, and F. Nagata, ‘Robotics for rescue and risky
intervention’, in IECON 2011 - 37th Annual Conference on IEEE In-
dustrial Electronics Society, pp. 3305–3310, (Nov 2011).

[9] Kurt Jensen, ‘Coloured petri nets’, Petri nets: central models and their
properties, 248–299, (1987).

[10] Kurt Jensen and Lars M. Kristensen, Coloured Petri nets: Modelling
and Validation of Concurrent Systems, Springer, 2009.

[11] Gal A. Kaminka and Inna Frenkel, ‘Flexible teamwork in behavior-
based robots’, in Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-
sylvania, USA, pp. 108–113, (2005).

[12] Gal A. Kaminka and Inna Frenkel, ‘Flexible teamwork in behavior-
based robots’, in Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-
sylvania, USA, pp. 108–113, (2005).

[13] Torsten Kröger, ‘On-line trajectory generation: Nonconstant motion
constraints’, in Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pp. 2048–2054. IEEE, (2012).

[14] Torsten Kröger and Jose Padial, ‘Simple and robust visual servo control
of robot arms using an on-line trajectory generator’, in Robotics and

Automation (ICRA), 2012 IEEE International Conference on, pp. 4862–
4869. IEEE, (2012).

[15] Simon Lacroix and Guy Besnerais, Robotics Research: The 13th Inter-
national Symposium ISRR, chapter Issues in Cooperative Air/Ground
Robotic Systems, 421–432, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011.

[16] Tadao Murata, ‘Petri nets: Properties, analysis and applications’, Pro-
ceedings of the IEEE, 77(4), 541–580, (1989).

[17] M. Owen, H. Yu, T. McLain, and R. Beard, ‘Moving ground target
tracking in urban terrain using air/ground vehicles’, in 2010 IEEE
Globecom Workshops, pp. 1816–1820, (Dec 2010).

[18] James Lyle Peterson, ‘Petri net theory and the modeling of systems.’,
PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NJ 07632, 1981,
290, (1981).

[19] C. Phan and H. H. T. Liu, ‘A cooperative uav/ugv platform for wildfire
detection and fighting’, in System Simulation and Scientific Comput-
ing, 2008. ICSC 2008. Asia Simulation Conference - 7th International
Conference on, pp. 494–498, (Oct 2008).

[20] Milind Tambe, ‘Towards flexible teamwork’, Journal of Artificial Intel-
ligence Research, 83–124, (1997).

[21] H. Yu, R. W. Beard, M. Argyle, and C. Chamberlain, ‘Probabilistic path
planning for cooperative target tracking using aerial and ground vehi-
cles’, in Proceedings of the 2011 American Control Conference, pp.
4673–4678, (June 2011).

[22] Erica Zawodny MacArthur, Donald MacArthur, and Carl Crane. Use
of cooperative unmanned air and ground vehicles for detection and dis-
posal of mines, 2005.

[23] V.A. Ziparo, L. Iocchi, PedroU. Lima, D. Nardi, and P.F. Palamara,
‘Petri net plans’, Autonomous Agents and Multi-Agent Systems, 23(3),
344–383, (2011).

	front matter
	COIN@ECAI 2016
	NorMAS
	COIN ++ @ ECAI 2016 schedule

	1
	A manifesto for conscientious design of hybrid online social systems

	2
	3
	4
	``How Did They Know?'' — Model-checking for Analysis of Information Leakage in Social Networks

	5
	6
	7
	8
	Towards a Distributed Data-Sharing Economy
	Introduction
	Policy Compliance
	Transaction Records
	Numerical Encoding of Data Elements
	Policies
	Finding Relevant Transaction Records

	Requirements and Architecture
	Illustrative Scenario
	Analysis of our Solution
	Proof of Concept Implementation
	Related Work
	Conclusions, Discussions, and Future Work

	9
	10

